

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

TITANIUM BIOCOMPATIBILITY IN ORAL TISSUES - A SYSTEMATIC REVIEW

Jeevanandam Loganathan¹, A. Arul Jeya Kumar², A. Ranukumari³, R. Shakila⁴, N. Mahendirakumar⁵, K. Sivaguru⁶

 Professor. Department of Prosthodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry 605006.

2. Professor. Department of mechanical Engineering SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203.

 Professor. Department of Prosthodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry 605006.

4. Professor. Department of Prosthodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry 605006.

5. Associate Professor. Government Dental College and hospital, cuddalore District. Chidambaram.

 Commandant - Assam Rifles/ PG third year student. Department of Prosthodontics, Tamil Nadu Government Dental College and Hospital - Chennai - 600003.

EMAIL: mmdcdentalomfp@gmail.com

Received: 12/26/2025 Accepted: 01/11/2025

ABSTRACT

Background - Over the past decade, dental implants have gained widespread acceptance and adoption as a solution for replacing missing teeth and supporting various types of dental prostheses, including fixed and partially removable ones. Despite their generally

Artículo de Revisión

Loganathan y Col.

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

Volumen 15, N° 30 Especial, 2025

high long-term success rates, with 96.1% survival after ten years and 83.8% after 25 years,

implant failures remain a possibility. Material and Methods: Major databases such as

Medline were explored detailed literature search in resulting in a systematic review

pertaining to titanium implants. Results: Six scientific articles dated between 2020–2024

pertaining to titanium implants were highlighted. Discussion - Recent years have seen a

significant increase in evidence suggesting that inflammation induced by bacterial biofilms

around implants can lead to complications affecting both soft and hard tissues, ultimately

resulting in implant failure. Conclusion - This inflammatory state is identified as peri-

implant mucositis and peri-implantitis, highlighting the importance of vigilant periodontal

and prosthetic maintenance in implant care.

KEYWORDS: Titanium; prosthodontics; implant; dentistry; maxillofacial.

BIOCOMPATIBILIDAD DEL TITANIO EN TEJIDOS BUCALES: UNA REVISIÓN

SISTEMÁTICA

RESUMEN

Antecedentes: durante la última década, los implantes dentales han ganado una amplia

aceptación y adopción como una solución para reemplazar los dientes perdidos y soportar

varios tipos de prótesis dentales, incluidas las fijas y parcialmente removibles. A pesar de

385

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

sus tasas de éxito a largo plazo generalmente altas, con una supervivencia del 96,1%

después de diez años y del 83,8% después de 25 años, el fracaso de los implantes sigue

siendo una posibilidad. Material y métodos: Se exploraron bases de datos importantes como

Medline y se realizó una búsqueda bibliográfica detallada que dio como resultado una

revisión sistemática relacionada con los implantes de titanio. Resultados: Se destacaron seis

artículos científicos fechados entre 2020 y 2024 relacionados con implantes de titanio.

Discusión - En los últimos años se ha observado un aumento significativo de la evidencia

que sugiere que la inflamación inducida por biopelículas bacterianas alrededor de los

implantes puede provocar complicaciones que afectan tanto a los tejidos blandos como a

los duros y, en última instancia, provocar el fracaso del implante. Conclusión - Este estado

inflamatorio se identifica como mucositis periimplantaria y periimplantitis, destacando la

importancia de un mantenimiento periodontal y protésico vigilante en el cuidado de los

implantes.

PALABRAS CLAVE: Titanio; prótesis; implante; odontología; maxilofacial.

INTRODUCTION

Titanium, an illustrious transition

metal boasting atomic number 22,

stands as a cornerstone in the

creation of dental implants (1,2). Its

biocompatibility, first

acknowledged by Gottlieb

Leventhal in 1951, stems from its

386

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

inert behaviour within living tissue (1). Bengt Kasemo expanded upon this, attributing titanium's superior qualities as an implant material to the ultra-thin oxide layer, measuring 2–10 nanometers thick, that swiftly forms upon exposure to oxygen. This oxide layer endows titanium with high polarization resistance, shielding it against corrosion and preventing the release of metallic ions into the body (3,4). Additionally, the surface oxide film's high dielectric constant makes it an ideal site for chemicalbonding and the attachment of various biomolecules (5).

MATERIALS AND METHODS

"Titanium" AND "implant" AND "biocompatability" were the words used in MEDLINE database using advance search strategy targeting different article categories between 2020 to 2024. The result was 41 articles, out of which we selected 6 articles based in the inclusion criteria. Inclusion criteria was of scientific literature between 2020-2024. Exclusion criteria was of scientific literature devoid of scientific literature irrelevant to the specific search 'Titanium'. This systematic review was conducted to determine importance of podoplanin following the guidelines of the PRISMA (Preferred Reporting Items Systematic Reviews and Metafor Analyses). PubMed, Lilacs, Embase, Scopus, and Web of Science were the

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

source of electronic databases. The search strategy used Boolean operators (AND and OR): [ALL ("Titanium") AND (implant OR biocompatability OR prosthodontics OR oral OR rehabilitation OR dentistry) AND (prostheses)]. The following data were collected: first author, year, country of study, type of study and outcome. The quality of studies assessed using the **STROBE** was

(Strengthening the Reporting of Observational Studies) checklist.

RESULTS

Six articles were included in this systematic review based on the selection criteria and PRISMA flow chart. We analyzed and mentioned in the articles reviewed. This included only relevant research articles and excluded articles pertaining to non specific search terms.

S.NO.	AUTHOR	YEAR	JOURNAL	OUTCOME
1	Kheder W, Al Kawas S, Khalaf K,	2021	Jpn Dent Sci	relation between the
	Samsudin AR.		Rev.	presence of titanium
				particles and ions,
				biological
				complication, and
				corrosion
2	Eftekhar Ashtiani, Reza et al.	2021	Evidence-based	Dental pulp
				regeneration, the
			Complementary	healing process, and
				antibacterial and anti-
				inflammatory effects.

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

			and Alternative	
			Medicine	
3	Dr Madiha Umar, Tayyaba Bari,	2024	Journal of	improved patient
	Dr. Fahimullah, Rimsha Qasim,		Population	outcomes and
	Hadia Khursheed, Dr. Robina		Therapeutics	enhanced clinical
	Tasleem, & Dr. Hafiz Mahmood		and Clinical	practices.
	azam.		Pharmacology	
4	Roy M, Corti A, Dominici S,	2023	Journal of	Do not produce
	Pompella A, Cerea M, Chelucci E,		Functional	cytotoxic or
	Dorocka-Bobkowska B, Daniele S.		Biomaterials.	proinflammatory
				effects on gingival
				fibroblasts,
4	Silva RCS, Agrelli A, Andrade AN,	2022	Materials	Nanobiotechnological surface modifications
	Mendes-Marques CL, Arruda IRS,		(Basel).	surface modifications
	Santos LRL, Vasconcelos NF,			
	Machado G.			
5	Hoornaert A, Vidal L, Besnier R,	2020	Clin Oral	Favorable surface modification, phase
	Morlock JF, Louarn G, Layrolle P		Implants Res	control, and mechanical properties.

Acta

ACTA BIOCLINICA

Artículo de Revisión Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

6	W. Nicholson J.	2020	Prosthesis	Alloys cpTi and Ti-6Al-4V

TABLE 1 - An overview

DISCUSSION

The bioactivity, osseointegration, and biocompatibility properties of titanium play pivotal roles in fostering bone formation directly onto the metal surface following dental implant placement, thus contributing to the exceptional survival rate and effectiveness of titanium dental implants (6,7). Osseointegration, crucial for implant success, involves the interplay between living bone and titanium/titanium alloy dental implants, particularly within the

interfacial zone measuring 21 to 50 nanometres. Here. bone cells release essential growth factors, facilitating bone formation around implants.Moreover, the blood plasma proteins deposit onto the surface oxide layer of titanium dental implants post-implantation, triggering the formation of fibrin matrices. These matrices act as scaffolds, providing a conducive environment for bone-forming cells to reside and promoting bone formation to anchor the implants (8,9). An exemplary titanium dental

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

implant, the OsseoSpeed implant from DENTSPLY Implants, debuted in 2004. Its unique surface texture is achieved through two sequential manufacturing steps: titanium oxide blasting followed by hydrofluoric acid etching (10–12). Ellingsen et al. conducted studies on OsseoSpeed implants using a rabbit model, revealing significantly greater removal torque, shear bone-to-implant strengths, and contact levels compared to controls after 1 and 3 months of healing (13).Clinical trials further underscore the success of OsseoSpeed implants. Mertens and Sterling evaluated 42 implants over five years, reporting an impressive 97% survival rate and minimal

marginal bone loss. Raes et al. documented a one-year survival rate of 98% with OsseoSpeed implants in the anterior maxilla, while Collaert et al. observed a two-year survival rate of 100% in edentulous patients treated with OsseoSpeed mandibular implants (14,15). These findings reinforce the efficacy and longevity of OsseoSpeed implants clinical practice. Despite the successful application of titanium implants, research has constantly aimed to develop advanced titanium alloying techniques to optimize biocompatibility and mechanical properties. However, Ti implants usually cannot be placed in narrow bones such as the anterior alveolar ridge (16). In addition,

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

proximity between the implant and neighbouring teeth could cause bone loss. Thus, different titanium alloys have been developed to improve the mechanical strength for applications requiring smalldiameter implants (≤ 3.5 mm) (17). Titanium-6aluminum-4vanadium is one of the most commonly used titanium alloys. Ti alloy's most commonly used product in dental implants is Ti-6Al-4V, known as Grade V titanium alloy, composed of 6 and 4% aluminium and vanadium with the addition of a maximum of 0.25% of iron and 0.2% of oxygen. Ti-6Al-4V yields better strength and fatigue features, excellent corrosion resistance, and improved elastic modulus an

compared to cp-Ti. Specifically, vanadium has been demonstrated with high cytotoxicity, and aluminium might play a role in inducing senile dementia. However, a safety risk is posed due to the release of toxic vanadium and aluminium ions. Titanium-nickel is limited due also nickel hypersensitivity (18).When compared, titanium alloys incorporating beta-phase other stabilizers such as tantalum, molybdenum, niobium, and zirconium have garnered increased attention as materials for medical applications due to their non-toxic and non-allergenic properties (19). Zirconium shares the same crystal structure as titanium and exhibits

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

complete mutual solubility with it (20).Titanium-zirconium alloys (TiZr) have exhibited enhanced corrosion resistance, improved tensile and fatigue strength, and comparable biocompatibility titanium (21,22) Notably, titanium and zirconium are the only metals not inhibit osteoblast growth, making a combination of both well-suited for implants (3).One such TiZr alloy, known as Roxolid®, developed by Straumann AG (Basel, Switzerland), contains 13 to 17% zirconium. Its surfaces undergo pretreatment involving large-grit (0.25–0.5 mm) aluminium oxide sandblasting and acid etching using hydrochloric and sulfuric acid. In a study by Gottlow et al.,

significantly higher removal torque and bone area were observed in vivo for a titanium-zirconium alloy compared to commercially pure (cp) titanium (23). Furthermore, it was observed that the oxides on titanium-zirconium alloy surfaces are more stable and have favourable corrosion resistance (24).Moreover, the alloying of titanium with zirconium improves the mechanical strength, especially for applications small-diameter in implants (22).While the mechanical strength is high for titanium-zirconium alloys, they are well suited for implantation in the cortical bone due to a low Young's modulus, which prevents stress shielding (25). The effect of Zr on

Artículo de Revisión Loganathan y Col.

n Depósito Lega

Depósito Legal: PPI201102ME3815

Volumen 15, N° 30 Especial, 2025

ISSN: 2244-8136

the increase mechanical in properties its ability and influence the etching process were identified as causes for these differences Increased (26).mechanical properties were responsible for fewer structural changes on TiZr during sand blasting. TiZr increased integrinbeta3 mRNA and protein levels compared with Ti in an in vitro study by Gomez et al. Cells on TiZr surfaces showed higher MMP1 protein levels than Ti surfaces, although similar TIMP1 protein production was observed (27), suggesting that TiZr is a potential clinical candidate for soft tissue integration (28).

Moreover, the incorporation of zirconium into titanium alloys has been noted to impact their corrosion resistance and serve as a catalyst in the generation of hydrogen during etching and hydridation processes. Additionally, mechanical the characteristics of titaniumzirconium alloys permit placement of small-diameter implants in critical implantation sites, such as the anterior region of the mandible, where bone volume is limited, and crestal bone thickness is substantial. An alternative alloy formulation may involve titanium, tantalum, niobium, and zirconium, exhibiting cytocompatibility similar commercially pure titanium (cpTi) but eliciting a reduced

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

inflammatory response and enhanced osseointegration. For instance, titanium-tantalumniobium-zirconium (with possible additions of silicon and iron) demonstrated improved cytotoxicity compared to the Ti-6Al-4V alloy. (29). Although adverse effects of these components have yet to be observed when utilized in the form titanium alloys for dental of implants, it is advisable to exercise extra caution and conduct long-term evaluations address safety to concerns. Animal studies have indicated the superior mechanical properties of titanium alloy compared to titanium alone when employed as a material for tooth implants. The biological responses

alloys to these have been investigated in vitro (30). It has been observed that the composition of the alloy has favourable effects on its microstructure, consequently its mechanical influencing properties. However, there remains a scarcity of randomized, controlled clinical trials concerning alloying of titanium. A review conducted by Wennerberg et al. found limited clinical evidence thus far to support a preference for alloying titanium over using zirconia or titanium alone.

In a split-mouth study comparing titanium alloying with titanium alone, utilizing early loading protocols in irradiated patients, one hundred and two implants were

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

placed in twenty patients across both jaws. Following a one-year follow-up, excellent yield strength and fatigue properties were observed for all implants, resulting in higher survival rates and minimal marginal bone loss (<0.4 mm) in all significant patients, with no difference noted between the groups. However, it was noted that alloying with titanium exhibited low wear resistance, a higher elastic modulus approximately 4–10 times that of human bone, and lower shear strength, potentially impacting its utility as implants or in screw form. (1)The surface of titanium holds treatment paramount importance in ensuring the successful osseointegration of

implants bone into tissue. Inadequate healing of the implant can lead to severe complications such as infection, inflammation, aseptic loosening, or the stressshielding effect, necessitating Following reoperation. the implantation of a titanium graft, various interactions are critical for establishing a robust bone-implant interface. Cell adhesion to the implant surface is essential, with surface roughness playing a pivotal role in enhancing and expediting osseointegration. Equally crucial factors include biocompatibility and resistance to bacterial colonization. (31)Titanium's bio-inertness attributed to the spontaneous formation of a protective film of

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

titanium oxides on its surface. This film acts as a barrier against the ingress of metal compounds while facilitating the adhesion of calcium and phosphate ions necessary for mineralized bone structure formation. However. the presence of this film does not ensure titanium's biocompatibility; an appropriate surface finish is imperative to establish a secure bone-implant connection. The methods utilised to enhance the cell adhesion by increasing the surface roughness encompass a range of techniques including plasma spraying, sandblasting, acid etching, treatment, laser and sol-gel, categorized into three overlapping groups based on the type of

modification.(31)However, altering the surface morphology of titanium without affecting its chemical composition, and vice versa, presents challenge. Etching processes applied to titanium for surface modifications increase the hydrogen content on the titanium surfaces, forming titanium hydride as hydrogen ions attach to the outer surface layer. The degree of this process depends on factors such as the acidity of the solution and the duration of etching. Studies suggest higher hydrogen content that facilitates faster healing and enhances osseointegration. Thus, cathodic polarization is employed to increase the thickness and concentration of the titanium

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

hydride Videm layer. al. demonstrated that surfaces with higher hydrogen content exhibit 60% greater retention in in vivo models. Moreover, hydridation enhances attachment the of biological molecules, which bind to the surface alongside hydrogen.(1)While the oxide layer on titanium is a significant feature, attempts increase to biocompatibility solely by thickening this layer through anodic oxidation in acidic solutions have not shown notable improvements. However, hydroxylation in alkaline solutions can increase the presence hydroxide groups surface.(1) Modifying the chemistry of implant surfaces involves various

chemical processes to enhance their physical and mechanical properties. Such alterations lead to improved performance and longevity of dental implants. Chemical treatments for modification surface be can categorized into acid treatment, alkali treatment, hydrogen peroxide anodic oxidation. usage, and Anodic oxidation aims to thicken the titanium oxide layer on implant surfaces, while hydrogen peroxide creates a porous outer layer and dense inner oxide layer, enhancing corrosion resistance. Alkali and acid treatments focus on improving biocompatibility.(1)Surface modification of titanium and its alloys, such as Ti-6A1-4V and cpTi (commercially pure titanium),

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

involves oxidizing titanium (IV). These changes significantly boost the adhesion of osteoblasts and the oxide layer, thus improving their biological properties for dental implant applications. Nonetheless, such alterations may trigger an immune response and fibrosis around the implants as chemically modified surfaces can be more readily recognized by the body as foreign, leading to the release of fibrotic factors (32). Abrahamsson et al. conducted a comparative analysis of peri-implant tissues focusing on titanium and gold alloys. Thirty-two titanium implants were surgically placed in five dogs, with the distance from the abutment-implant junction to the

first bone-implant contact serving as a measure of actual bone loss. Histometric findings revealed that bone loss was 0.78 mm around titanium (serving as the control implant), 0.80 mm around the alloy, 1.80 mm around zirconium, and 1.26 mm around the dental porcelain implant. Clinical assessment highlighted significant soft tissue recession around the alloy implant. Piattelli et al. noted a distinction in peri-implant tissue stability between titanium abutments versus those made of gold alloy, zirconia, and aluminum oxide. Their study, drawing on various sources including dental implants, prosthetics, and periodontal journals, encountered

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

challenges regarding the accuracy of soft tissue measurements. Notably, peri-implant tissues around zirconia and titanium were primarily defined through histological and animal studies. Consequently, the heterogeneous nature of research methodologies, follow-up durations, and outcome variables hindered meta-analysis efforts. For instance. titanium abutments did not exhibit superior bone level maintenance compared those made of gold alloy, aluminum oxide, zirconia. or Additionally, comprehensive clinical performance data comparing zirconia and alloy to titanium were lacking.A study comparing the reaction of periimplant tissues to titanium and alloy implants was conducted in dogs. Bone loss, measured from the implant-abutment junction to the first bone-implant contact, revealed a bone loss of 0.78 mm around the titanium implant and 1.80 mm around the alloy implant (33). In another investigation, 12 implants were placed in six monkeys to compare zirconia and titanium implants. No discernible difference was observed between the treatment groups receiving either material implant. Furthermore, the capacity establish stable peri-implant tissues was assessed using singlepiece alloy and titanium implants. The findings demonstrated vertical expansion of soft peri-

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

implant tissues from the mucosal margin to the initial bone-implant contact (34).Α histological examination investigating the soft tissue response to titanium and zirconium healing caps/abutments was conducted in a cohort of five patients. Six months postimplantation, gingival biopsy specimens were obtained from both control implant sites. test and Results indicated higher prevalence of inflammation titanium specimens compared to zirconium counterparts. Furthermore, the composition of peri-implant tissue among tested abutments was delineated through comparisons involving single-piece soft tissue samples from aluminium

oxide and titanium implants in twenty patients (33). A four-year randomized trial employing a splitmouth design compared the response of peri-implant tissues to titanium and gold alloy implants restored with metal-ceramic crowns in twenty patients. Each patient received two implants, one gold alloy and one titanium. After four years, no significant difference was noted in the peri-implant tissue response to gold alloy or titanium implants. Additionally, a clinical randomized controlled multicentre study compared aluminium oxide and titanium implants. In the first thirty-four phase, test sintered aluminium oxide abutments were placed alongside thirty-five control

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

implants and followed up for one year. Subsequently, fifteen patients underwent placement of ten test and ten control abutment implants, with a follow-up period of three years. Results indicated negligible bone loss around ceramic implants in the first group, while the second group exhibited a loss of 0.3 mm after one year and a gain of 0.1 mm after three years (35). Furthermore, a five-year study aimed to discern differences between ceramic and titanium implants. Thirty-two patients received a total of 103 implants, with fifty-three aluminum oxide ceramics being utilized. Notably, soft tissue around both implant types remained healthy. In of peri-implant mucosal terms

bleeding, distinction no was observed between ceramic and titanium implants. However, less bone loss observed with was titanium abutment implants compared to ceramic implants (35).

CONCLUSION

Dental implants, especially those crafted from titanium and its alloys, have transformed the landscape of tooth replacement therapy. Their remarkable longevity in clinical underscores their settings effectiveness in reinstating both oral function and aesthetics. Titanium's compatibility with biological tissues and its ability to integrate seamlessly into the surrounding

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

bone make it an ideal choice for dental implants, with the protective oxide layer playing a pivotal role in preventing corrosion and fostering bone growth around implant. However, ongoing research in titanium alloys seeks to improve their mechanical properties and broaden their applicability, especially in cases where bone volume is limited. Titaniumzirconium alloys, in particular, have emerged as promising alternatives, offering enhanced corrosion resistance and mechanical strength compared to pure titanium. Furthermore, surface modifications of these alloys contribute to their biocompatibility and facilitate better integration with the adjacent

tissues. Studies focusing on periimplant outcomes emphasize the critical role of material selection in influencing tissue response. While titanium implants generally exhibit results. positive comparative analyses with materials like zirconia and gold alloys reveal varying tissue reactions and rates of bone loss. Insights from clinical trials provide valuable guidance for decisions, ultimately treatment optimizing patient outcomes.Looking ahead, ongoing research efforts into implant materials and surface enhancements hold the promise of further improving implant success rates and enhancing patient satisfaction. Long-term clinical investigations

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

and advancements in material science will continue to propel innovation in dental implantology, ensuring the delivery of optimal outcomes for individuals seeking tooth replacement therapy.

REFERENCES

- 1. Haugen HJ, Chen H. Is There a Better Biomaterial for Dental Implants than Titanium?-A Review and Meta-Study Analysis. J Funct Biomater. 2022 Apr 20;13(2):46.
- Hong DGK, Oh J hyeon. Recent advances in dental implants.
 Maxillofac Plast Reconstr Surg. 2017
 Dec;39(1):33.

- 3. Steinemann SG. Titanium the material of choice? Periodontology 2000. 1998 Jun;17(1):7–21.
- Wintermantel E, Ha SW.
 Medizintechnik: Life Science
 Engineering. Springer Science &
 Business Media; 2009 Jul 1.
- 5. Kasemo B, Lausmaa J. Materialtissue interfaces: the role of surface properties and processes.

 Environmental health perspectives.

 1994 Oct;102(suppl 5):41-5.
- 6. Vora HD, Shanker Rajamure R, Dahotre SN, Ho YH, Banerjee R, Dahotre NB. Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti–6Al–4V biomaterial in physiological solution. Journal of the Mechanical Behavior of Biomedical Materials. 2014 Sep;37:153–64.

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

- 7. Nicholson JW. The chemistry of medical and dental materials. Royal Society of Chemistry; 2020 May 28.
- 8. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009 Apr 1;9(2):61-71.
- 9. Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metabolism Reviews. 2017 Jan 2;49(1):92–104.
- 10. Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontology 2000. 2006 Jun;41(1):136–56.

- 11. Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP. Ellingsen JE. The effect of hydrofluoric acid of treatment titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials. 2009 Feb;30(5):736–42.
- Lamolle SF. 12. Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J Biomedical Materials Res. 2009 Mar;88A(3):581–8.
- 13. Rønold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test.

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

Biomaterials. 2003 Nov;24(25):4559–64.

- 14. Raes F, Renckens L, Aps J, Cosyn J, De Bruyn H. Reliability of Circumferential Bone Level Assessment around Single Implants in Healed Ridges and Extraction Sockets Using Cone Beam CT. Clin Implant Dent Rel Res. 2013 Oct;15(5):661–72.
- 15. Collaert B, Wijnen L, De Bruyn H. A 2-year prospective study on immediate loading with fluoridemodified implants in the edentulous mandible. Clinical Oral Implants Res. 2011 Oct;22(10):1111–6.
- 16. Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland, Saulacic N, Bosshardt D, Bornstein M, Berner S, Buser C. Bone

apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. eCM. 2012 Apr 10;23:273–88.

- 17. Geurs NC, Vassilopoulos PJ, Reddy MS. Soft Tissue Considerations in Implant Site Development. Oral and Maxillofacial Surgery Clinics of North America. 2010 Aug;22(3):387–405.
- 18. Okazaki Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials. 2002 May;23(9):2071–7.
- 19. Ye W, Mi X, Song X. Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium. Rare Metals. 2012 Jun;31(3):227–30.
- 20. Thibon I, Ansel D, Gloriant T.

 Interdiffusion in β-Ti–Zr binary

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

alloys. Journal of Alloys and Compounds. 2009 Feb;470(1–2):127–33.

- 21. Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci: Mater Med. 2008 Oct;19(10):3179–86.
- 22. Grandin HM, Berner S, Dard M. A
 Review of Titanium Zirconium (TiZr)
 Alloys for Use in Endosseous Dental
 Implants. Materials. 2012 Aug
 13;5(8):1348–60.
- 23. Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a New Titanium-Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig. Clin Implant Dent Rel Res. 2012 Aug;14(4):538–45.

- 24. Ferreira EA, Rocha-Filho RC, Biaggio SR, Bocchi N. Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corrosion Science. 2010 Dec;52(12):4058–63.
- 25. Wen CE, Yamada Y, Hodgson PD. Fabrication of novel TiZr alloy foams for biomedical applications.

 Materials Science and Engineering: C.

 2006 Sep;26(8):1439–44.
- 26. Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching. Materials Science and Engineering: C. 2013 Apr;33(3):1282–8.
- 27. Gómez-Florit M, Ramis JM, XingR, Taxt-Lamolle S, Haugen HJ,Lyngstadaas SP, et al. Differential

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces. J of Periodontal Research. 2014 Aug;49(4):425–36.

28. Xing R, Lyngstadaas SP, Ellingsen JE, Taxt-Lamolle S, Haugen HJ. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clinical Oral Implants Res. 2015 Jun;26(6):649–56.

29. Kopova I, Stráský J, Harcuba P, Landa M, Janecek M, Bacákova L. Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Materials Science and Engineering: C. 2016 Mar;60:230–8.

30. Mat-Baharin NH, Razali M, Mohd-Said S, Syarif J, Muchtar A.

Influence of alloying elements on cellular response and in-vitro corrosion behavior of titaniummolybdenum-chromium alloys materials. implant Journal of Prosthodontic Research. 2020 Oct;64(4):490-7.

31. Stepanovska J, Matejka R, Rosina J, Bacakova L, Kolarova H. Treatments for enhancing the biocompatibility of titanium implants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020 Mar 26;164(1):23–33.

32. De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W, et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontology 2000. 2017 Feb;73(1):218–27.

Artículo de Revisión Loganathan y Col. Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

- 33. Linkevicius T, Apse P. Influence of abutment material on stability of peri-implant tissues: a systematic review. International Journal of Oral & Maxillofacial Implants. 2008 Jun 1;23(3).
- 34. Kohal RJ, Weng D, Bächle M, Strub JR. Loaded Custom-Made Zirconia and Titanium Implants Show Similar Osseointegration: An Animal Experiment. Journal of Periodontology. 2004 Sep;75(9):1262–8.
- 35. Andersson B, Glauser R, Maglione M, Taylor A. Ceramic implant abutments for short-span FPDs: a prospective 5-year multicenter study. Int J Prosthodont. 2003;16(6):640–6.
- 36. Kheder W, Al Kawas S, Khalaf K, Samsudin AR. Impact of tribocorrosion and titanium particles

release on dental implant complications - A narrative review.

Jpn Dent Sci Rev. 2021 Nov;57:182-189.

- 37. Eftekhar Ashtiani, Reza et al. "The Role of Biomaterials and Biocompatible Materials in Implant-Supported Dental Prosthesis." Evidence-based Complementary and Alternative Medicine: eCAM 2021 (2021)
- 38. Umar, Madiha & Bari, Tayyaba & Fahimullah, Dr & Qasim, Rimsha & Khursheed, Hadia & Tasleem, Robina & azam, Dr. (2024).

 DEVELOPMENT OF NOVEL BIOCOMPATIBLE MATERIALS FOR DENTAL IMPLANTS. Journal of Population Therapeutics & Clinical Pharmacology. 599-609. 10.53555

Artículo de Revisión

Loganathan y Col.

Volumen 15, N° 30 Especial, 2025

Depósito Legal: PPI201102ME3815

ISSN: 2244-8136

39.Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to **Improve** Biocompatibility and Prevent Infections. Materials (Basel). 2022 Apr 27;15(9):3150.

40. Hoornaert A, Vidal L, Besnier R, Morlock JF, Louarn G, Layrolle P. Biocompatibility and osseointegration of nanostructured titanium dental implants in minipigs. Clin Oral Implants Res. 2020 Jun;31(6):526-535.

41. W. Nicholson J. Titanium Alloys for Dental Implants: A Review. Prosthesis. 2020; 2(2):100-116.