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Introduction: Cell-penetrating peptides (CPPs) are amino acids that transport molecular 

cargo across cellular membranes, making them useful in drug delivery, gene therapy, 

vaccines, and more. They can cross lipid bilayers, enhance vaccine delivery, and improve 

immune response. Machine learning can improve drug discovery by predicting CPPs, 

enhancing drug delivery systems, and personalizing medicine. Objective: We aim to 

predict and classify natural and non-natural residues of cell-penetrating peptides using a 

pre-trained BERT model. Methods: The study used a curated database of over 1,564 

validated experimental cell-penetrating peptides (CPPs) with natural and non-natural 

residues. The datasets were cleaned and extracted using FASTA header identification and 

regex pattern matching. The extracted sequences were standardized to uppercase and 

length-based, resulting in 1,547 positive and 286 negative sequences. The study used a 

numerical vocabulary to tokenize amino acids and tokens and a BERT transformer to 

convert sequences into dense vectors. The model was trained using a structured looping 

protocol, including epoch iteration and loss computation. Results: The classification model 

for distinguishing non-native and native residues is evaluated using precision, recall, F1-

score, and support metrics. The model strongly understands both classes, minimizing false 

positives, and has a good trade-off between accuracy and sensitivity. Its overall accuracy is 

86%, with consistent performance across both classes. Conclusion: An 86% accuracy 
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peptide and protein bioinformatics model distinguishes native and non-native residues. 

However, it faces limitations like dataset imbalance and overfitting. Future developments 

will improve data balance, advanced modeling techniques, and biological insights. 

KEYWORDS: Natural Language Processing; Peptides; Peptide Mapping; cell-penetrating 

peptides. 

 

 PREDICCIÓN Y CLASIFICACIÓN DE RESIDUOS NATURALES Y NO 

NATURALES EN PÉPTIDOS PENETRANTES DE CÉLULAS USANDO UN 

MODELO BERT PRE-ENTRENADO 

 

 

Introducción: Los péptidos penetrantes de células (PPCs) son aminoácidos que transportan 

carga molecular a través de las membranas celulares, haciéndolos útiles en la 

administración de fármacos, terapia génica, vacunas y más. Pueden cruzar bicapas lipídicas, 

mejorar la administración de vacunas y mejorar la respuesta inmune. El aprendizaje 

automático puede mejorar el descubrimiento de fármacos al predecir PPCs, mejorar los 

sistemas de administración de fármacos y personalizar la medicina. Objetivo: Nuestro 

objetivo es predecir y clasificar residuos naturales y no naturales de péptidos penetrantes de 

células utilizando un modelo BERT pre-entrenado.  Métodos: El estudio utilizó una base 

RESUMEN 
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de datos curada de más de 1.564 péptidos penetrantes de células experimentales validados 

con residuos naturales y no naturales. Los conjuntos de datos se limpiaron y extrajeron 

utilizando la identificación de encabezados FASTA y la coincidencia de expresiones 

regulares. Las secuencias extraídas se estandarizaron a mayúsculas y basadas en la 

longitud, lo que resultó en 1.547 secuencias positivas y 286 negativas. El estudio utilizó un 

vocabulario numérico para segmentar aminoácidos y elementos y un transformador BERT 

para convertir secuencias en vectores densos. El modelo se entrenó utilizando un protocolo 

de bucle estructurado, que incluye la iteración de épocas y el cálculo de la pérdida. 

Resultados: El modelo de clasificación para distinguir residuos no nativos y nativos se 

evalúa utilizando métricas de precisión, recuperación, puntuación F1 y soporte. El modelo 

comprende fuertemente ambas clases, minimizando los falsos positivos, y tiene un buen 

equilibrio entre precisión y sensibilidad. Su precisión general es del 86%, con un 

rendimiento consistente en ambas clases. Conclusión: Un modelo de bioinformática de 

péptidos y proteínas con una precisión del 86% distingue los residuos nativos y no nativos. 

Sin embargo, enfrenta limitaciones como el desequilibrio del conjunto de datos y el 

sobreajuste. Los desarrollos futuros mejorarán el equilibrio de datos, las técnicas de 

modelado avanzadas y los conocimientos biológicos. 

PALABRAS CLAVE: Procesamiento del Lenguaje Natural; Péptidos; Mapeo de Péptidos; 

Péptidos Penetrantes de Células. 
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INTRODUCTION  

Cell-penetrating peptides (CPPs) are 

amino acids that facilitate the transport of 

molecular cargoes across cellular 

membranes. They are used in drug 

delivery, gene therapy, vaccines, protein 

delivery, diagnostics, biotechnology 

research, neuroscience, antimicrobial 

agents, cancer therapy, and targeted cell 

therapies (1). CPPs can cross the lipid 

bilayer of cells, a barrier for larger 

molecules like proteins and nucleic acids. 

They can deliver small molecules, 

peptides, proteins, or nucleic acids into 

cells, making them useful in cancer 

therapies. They can also transport 

plasmids or mRNA for gene editing, 

oligonucleotides, siRNAs, and mRNAs 

for gene silencing and editing 

technologies (2). CPPs can also enhance 

the delivery of antigens or adjuvants in 

vaccines, improve the immune response, 

and transport functional proteins into 

cells. However, they must be evaluated 

for toxicity, intracellular fate, and 

effectiveness. Despite these challenges, 

CPPs remain a versatile tool for 

biological research and oral and 

periodontal therapeutic applications (3–

5). 

Biological membranes act as barriers for 

drugs, making it difficult for new 

therapies like gene and protein therapy to 

enter cells. Cell-penetrating peptides 

(CPPs) offer a promising solution for 

delivering substances into cells with less 

toxicity (6,7). CPPs can carry different 

cargo types and be attached using 

covalent or non-covalent binding 

methods. The transport of CPPs across 
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biological membranes is unclear, but 

three main pathways have been reported: 

peptide concentration, peptide sequence, 

and lipid components in each membrane 

(8,9). Peptide concentration influences 

the uptake route of cationic CPPs, with 

higher concentrations causing rapid 

cytosolic uptake. The peptide sequence 

significantly influences cell-penetrating 

peptide (CPP) activity. Arginine-rich 

CPPs, including Tat and penetratin, 

increase local concentrations due to their 

high positive charge density. 

Amphipathic CPPs, such as MAPs, 

require both helical amphipathicity and a 

length of at least four complete helical 

turns to efficiently translocate across cell 

membranes. The positive charge of CPPs 

is essential for transport, but the charge 

alone is insufficient. The peptide-to-cell 

ratio can influence the uptake mode, with 

higher ratios resulting in direct 

penetration and endocytosis. Lipid 

components, such as heparin sulfate 

proteoglycans or phospholipids, are 

pivotal in the internalization mechanism 

(10,11). 

 

CPPs are a potential drug delivery 

method for treating cancer and diabetes. 

Machine learning can improve drug 

discovery by predicting CPPs using 

various algorithms and datasets 12). CPPs 

are crucial for drug delivery in cells, and 

accurately predicting them can save time 

in experiments. A new model called 

pLM4CCPs, created using convolutional 

neural networks, shows improved 

accuracy and sensitivity compared to 
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previous models. The best-performing 

models are ESM-1280 and ProtT5-XL 

BFD, with pLM4CCPs combining 

predictions from various models for better 

peptide classification (13). Predicting the 

natural residues in CPPs is essential for 

enhancing drug delivery systems, 

understanding biomolecular interactions, 

optimizing synthetic peptides, and 

personalizing medicine based on 

variability in effectiveness. BERT 

(Bidirectional Encoder Representations 

from Transformers) is a state-of-the-art 

model that can predict CPP residues by 

encoding protein sequences, enabling 

contextual representation, and facilitating 

transfer learning. Its capabilities include 

identifying key residues, extracting 

features for predictive modeling, handling 

variability, and multi-task learning. By 

harnessing BERT to predict CPP 

residues, researchers can enhance 

therapeutic strategies, improve drug 

delivery, and deepen their understanding 

of the mechanisms of cell penetration, 

positioning BERT as a pivotal tool in 

peptide design and evaluation. We aim to 

predict and classify natural and non-

natural residues of cell-penetrating 

peptides using a pre-trained BERT model. 

 

Materials and Methods  

 

Dataset Retrieval 

The peptide structures used in this study 

were sourced from a curated database, 

primarily from CPPsite 2.0 (12), which 

contains over 1,564 validated 

experimental CPPs with natural residues 
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and 291 peptides with non-natural 

residues. The analysis involved retrieving 

two distinct text files, the Positive and 

Negative Sequences files, using standard 

Python operations for successful reading. 

 

Data Cleaning and Sequence Extraction 

Once the datasets were loaded, 

comprehensive cleaning procedures were 

implemented to extract the sequences: 

FASTA Header Identification: The 

sequences were parsed by locating 

FASTA headers, marked by the presence 

of the " > " symbol. This header precedes 

sequence data in FASTA format, 

facilitating the separation of sequence 

identifiers from their respective 

sequences. 

 

Extraction Process 

Each header and its following sequence 

data were retrieved through either loop 

techniques or regex pattern matching. The 

headers were saved for reference, while 

sequences underwent cleansing to remove 

leading and trailing whitespace, 

improving accuracy. 

 

Standardization of Sequences 

The extracted sequences were converted 

to uppercase for uniformity and reduced 

case sensitivity issues. Non-standard 

amino acid filters excluded non-standard 

amino acids, allowing only the following: 

A, C, D, E, F, P, H, I, Isoleucine, K, L, 

M, N, P, Q, R, S, T, V, W, and Y. 
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Sequence Filtering 

The sequences underwent length-based 

filtering, discarding those shorter than 

five amino acids for meaningful analysis. 

The final datasets consisted of 1,547 

positive and 286 negative sequences, with 

the minimum length requirement of five 

amino acids. 

 

Tokenization and Transformation 

Token Insertion: Each sequence was 

prefixed with a [CLS] token and suffixed 

with a [SEP] token. This formatting is 

essential for many transformer-based 

models, particularly for classification 

tasks. 

 

Example Transformation 

Original Sequence: 

"ACDEFGHIKLMNPQRSTVWY" 

Tokenized Sequence:                  

"C  ACDEFGHIKLMNPQRSTVWY  S" 

The model used a numerical vocabulary 

to map amino acids and tokens, assigning 

unique indexes to them. Sequences were 

either padded using a designated token or 

truncated to a fixed length of 100 tokens. 

This ensured uniform input sizes and 

reduced computational complexity. The 

vocabulary mapping process also created 

a numerical representation of amino 

acids. 

 

Model Architecture 

The model uses a transformer from 

BERT, which converts tokenized 

sequences into dense vector 

representations. It employs Transformer 
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Encoder layers with multi-head self-

attention mechanisms to capture token 

dependencies. The model's final step is a 

classifier head that uses the output from 

the [CLS] token to predict binary classes, 

specifically identifying whether the 

peptide is n, using a Multi-Layer 

Perceptron (MLP). 

 

Hyperparameters 

The model was configured with 

hyperparameters such as vocabulary size, 

embedding dimension, hidden dimension, 

number of epochs, learning rate, and 

batch size. Vocabulary size is the total 

count of distinct amino acid tokens and 

special tokens. The embedding dimension 

is fixed at 64 for effective learning. The 

hidden dimension is set at 128 for feed-

forward layers. Epochs are set at 10 for 

proper training and generalization. The 

learning rate is set at 1e-3. 

 

Training Loop 

The model was trained using a structured 

looping protocol, including epoch 

iteration and loss computation. The 

training set included positive and negative 

sequences for each epoch. Binary cross-

entropy loss was calculated for both sets, 

collected across batches, and averaged for 

performance measurement. 

 

Results  

The classification model for 

distinguishing between non-native and 

native residues is evaluated using 

precision, recall, F1-score, and support 

metrics. The model's precision is around 
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0.86, indicating a strong understanding of 

both classes and minimizing false 

positives. The recall is 86% for non-

native and 86% for native, indicating a 

strong sensitivity to both classes. The F1-

score balances precision and recall, 

indicating a good trade-off between 

identifying true positives and minimizing 

false positives. The model's support is 

150 instances of non-native residues and 

217 instances of native residues, despite 

an imbalance in support. The overall 

accuracy is 86%, indicating the model's 

ability to generalize well to unseen data 

and categorize both classes effectively. 

The macro and weighted averages for 

precision, recall, and F1-score are all 

0.86, indicating consistent performance 

across both classes. The model's robust 

and balanced performance suggests its 

reliability in biological applications, 

particularly in peptide classification and 

bioinformatics. 
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Table 1 shows the accuracy of the transformer-based BERT model. 

 

Data Processing 

The initial step involved cleaning and 

filtering sequences extracted from two 

separate files, resulting in approximately 

1,547 positive and 286 negative 

sequences. The following steps outline 

the data processing and model 

development pipeline: 

 

 

 

1. Tokenization: 

-Subsequently, tokenization of 

these sequences was performed. 

Special tokens, specifically [CLS] 

and [SEP], were integrated into 

the sequences, which were then 

padded or truncated to a uniform 

length of 100 tokens. 

-This step converted the 

sequences into numerical indices, 

utilizing a pre-defined vocabulary 

Class Precision Recall F1-Score Support 

Non-native (0) 0.87 0.86 0.86 150 

Native (1) 0.85 0.86 0.85 217 

Accuracy ------ ----- 0.86 367 

Macro Avg 0.86 0.86 0.86 367 

Weighted Avg 0.86 0.86 0.86 367 
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2. Model Creation: 

-A transformer-based classifier 

was constructed, which 

incorporated an embedding layer, 

transformer encoders, and a multi-

layer perceptron (MLP) classifier 

 

3. Training: 

-The model underwent a training 

process spanning 10 epochs. 

-Throughout this training, both 

training and validation losses were 

meticulously recorded. The losses 

declined from approximately 0.45 

to 0.34 across both sets, indicating 

improved model performance. 

The best-performing model was 

preserved at the point of minimal 

validation loss 

 

4. Evaluation: 

-Upon completion of the training 

phase, a comprehensive 

classification report was 

generated, revealing an impressive 

overall accuracy of around 86%. 

-Critical to this analysis was 

confirming balanced performance 

between natural and non-natural 

residues with classes, 

underscoring the classifier's 

effectiveness and reliability. 

Overall, the methodology 

employed demonstrates a rigorous 

approach to data processing, 

classification, and evaluation, 

leading to significant 

achievements in model 

performance. 
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Figure 1 shows how the training and 

validation loss decreased over the 10 

training epochs. We can observe that 

training and validation loss steadily 

decreased throughout the training process. 

The final training loss was approximately 

0.32, while the validation loss was 0.33. 

There is no significant overfitting, as the 

validation loss closely follows the 

training loss. 

 

Figure 1. Epoch Loss Curve: Training versus Validation 
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Figure 2 shows the ROC curve of the model.  

 

Figure 2. Receiver Operating Characteristic (ROC) Curve 

 

The ROC (Receiver Operating 

Characteristic) curve plots the True 

Positive Rate against the False Positive 

Rate at various threshold settings. The 

AUC (Area Under Curve) of 0.92 

indicates excellent classification 

performance (a perfect classifier would 

have an AUC of 1.0). 
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Discussion  

The delivery of functional proteins to 

cells presents a promising therapeutic 

strategy, particularly for diseases linked to 

protein dysfunction. Unlike small-

molecule drugs, which can have adverse 

effects and often fail to replicate the 

specific roles of proteins, protein 

therapeutics offer a safer alternative 

without requiring genome modifications 

(14,15). Additionally, they tend to have 

shorter development timelines and 

broader patent protection. However, 

proteins' large and hydrophilic nature 

limits their direct cellular uptake. CPPs 

have emerged as effective tools for 

facilitating the delivery of these proteins 

into cells, utilizing mechanisms such as 

endocytosis. Recent advancements, 

particularly with cyclic CPPs, have 

shown improved efficiency in delivering 

proteins and RNA, indicating that 

modifications in their design can further 

enhance their delivery capabilities (16). 

Bert-based classification model for 

distinguishing between non-native and 

native residues is evaluated using 

precision, recall, F1-score, and support 

metrics. The model has a precision of 

0.86, indicating strong understanding and 

minimizing false positives. It recalls 86% 

for non-native and 86% for native, 

indicating sensitivity to both classes. The 

F1-score balances precision and recall, 

indicating a good trade-off between 

identifying true positives and minimizing 

false positives. The model's overall 

accuracy is 86%, indicating its reliability. 

The macro and weighted averages for 

precision, recall, and F1-score are 0.86, 
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similar to this study exploring machine 

learning models like SVM, Random 

Forest, J48, naïve Bayes, and SMO for 

analyzing atom composition and chemical 

descriptors. The Random Forest model 

achieved the highest accuracy with 

92.33% and an AUROC of 0.98 on a 

validation dataset (17). The CPP1708 

dataset is the largest reliable database of 

CPPs to date, with GraphCPP 

demonstrating superior predictive 

performance compared to previous 

methods. The model achieved a 92.8% 

and 23.3% improvement in Matthews 

correlation coefficient and AUC measures 

compared to the next best model. 

GraphCPP's ability to learn peptide 

representations was demonstrated through 

t-distributed stochastic neighbor 

embedding plots (18,19). It maintains 

high confidence in predictions for 

peptides shorter than 40 amino acids. 

Also similar to one more study showed 

that his study proposes a feature fusion-

based prediction model, where the protein 

pre-trained language models ProtBERT 

and ESM-2 are used as feature extractors, 

and the extracted features from both are 

fused to obtain a more comprehensive 

and effective feature representation, 

which is then predicted by linear 

mapping. Validated by many experiments 

on public datasets, the method has an 

AUC value as high as 0.983 and shows 

high accuracy and reliability in cell-

penetrating peptide prediction (20). 

The current classification model for 

distinguishing between native and non-

native residues has strong predictive 

performance, but there are several areas 
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for improvement. These include 

enhancing feature engineering, exploring 

deep learning techniques, implementing 

data augmentation techniques, conducting 

cross-validation and robustness testing, 

applying transfer learning from larger 

datasets, comparing the model against 

other state-of-the-art classification 

models, integrating with biological 

experiments, assessing beyond binary 

classification, and exploring 

interpretability frameworks (1,21). 

However, the model has limitations such 

as an imbalanced dataset, potential 

overfitting, feature limitations, bias in 

data, biological context, scalability, and 

limited exploration of biological 

relevance. The inherent class imbalance 

may affect the model's ability to 

generalize to underrepresented classes, 

and continuous validation through 

independent datasets is critical. The 

model's efficiency may be limited if 

features do not capture relevant biological 

signals. Any bias in the dataset, such as 

the selection of residues or environmental 

conditions not represented in the training 

data, could adversely affect the model's 

predictions. 

The model does not account for potential 

biological complexities, such as the 

influence of post-translational 

modifications or protein folding, which 

could impact residue functionality beyond 

the classification outcome (22). The 

current architecture may not scale 

efficiently for larger datasets without 

optimization, particularly if future studies 

involve extensive peptide libraries or 

high-throughput data. Lastly, the focus on 
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classification performance may overlook 

the biological relevance or function of the 

classified residues, necessitating a deeper 

analysis of implications in biological 

systems. Addressing these limitations will 

be crucial for establishing a more robust 

and reliable tool for biological 

applications and furthering research in 

peptide classification and bioinformatics. 

 

Conclusion  

A classification model with an accuracy 

of 86% distinguishes between native and 

non-native residues in peptide and protein 

bioinformatics. However, the model faces 

limitations such as dataset imbalance, 

overfitting, and a lack of comprehensive 

biological context. Future developments 

will focus on improving data balance, 

exploring advanced modeling techniques, 

and integrating biological insights to 

enhance the model's applicability and 

accuracy. This will create a more robust 

tool that enhances our understanding of 

protein functionality in complex 

biological systems. This work lays the 

groundwork for further explorations and 

collaborations in bioinformatics, bridging 

the gap between computational 

predictions and experimental validations. 
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