Biocompatibilidad del titanio en tejidos bucales: una revisión sistemática

Jeevanandam Loganathan, A. Arul Jeya Kumar, A. Ranukumari, R. Shakila, N. Mahendirakumar, K. Sivaguru

Resumen


Antecedentes: durante la última década, los implantes dentales han ganado una amplia aceptación y adopción como una solución para reemplazar los dientes perdidos y soportar varios tipos de prótesis dentales, incluidas las fijas y parcialmente removibles. A pesar de sus tasas de éxito a largo plazo generalmente altas, con una supervivencia del 96,1% después de diez años y del 83,8% después de 25 años, el fracaso de los implantes sigue siendo una posibilidad. Material y métodos: Se exploraron bases de datos importantes como Medline y se realizó una búsqueda bibliográfica detallada que dio como resultado una revisión sistemática relacionada con los implantes de titanio. Resultados: Se destacaron seis artículos científicos fechados entre 2020 y 2024 relacionados con implantes de titanio. Discusión - En los últimos años se ha observado un aumento significativo de la evidencia que sugiere que la inflamación inducida por biopelículas bacterianas alrededor de los implantes puede provocar complicaciones que afectan tanto a los tejidos blandos como a los duros y, en última instancia, provocar el fracaso del implante. Conclusión - Este estado inflamatorio se identifica como mucositis periimplantaria y periimplantitis, destacando la importancia de un mantenimiento periodontal y protésico vigilante en el cuidado de los implantes.

Recibido: 26/12/2025
Aceptado: 11/01/2025


Palabras clave


Titanio; prótesis; implante; odontología; maxilofacial

Texto completo:

PDF (English)

Referencias


Haugen HJ, Chen H. Is There a Better Biomaterial for Dental Implants than Titanium?-A Review and Meta-Study Analysis. J Funct Biomater. 2022 Apr 20;13(2):46.

Hong DGK, Oh J hyeon. Recent advances in dental implants. Maxillofac Plast Reconstr Surg. 2017 Dec;39(1):33.

Steinemann SG. Titanium — the material of choice? Periodontology 2000. 1998 Jun;17(1):7–21.

Wintermantel E, Ha SW. Medizintechnik: Life Science Engineering. Springer Science & Business Media; 2009 Jul 1.

Kasemo B, Lausmaa J. Material-tissue interfaces: the role of surface properties and processes. Environmental health perspectives. 1994 Oct;102(suppl 5):41-5.

Vora HD, Shanker Rajamure R, Dahotre SN, Ho YH, Banerjee R, Dahotre NB. Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti–6Al–4V biomaterial in physiological solution. Journal of the Mechanical Behavior of Biomedical Materials. 2014 Sep;37:153–64.

Nicholson JW. The chemistry of medical and dental materials. Royal Society of Chemistry; 2020 May 28.

Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009 Apr 1;9(2):61-71.

Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metabolism Reviews. 2017 Jan 2;49(1):92–104.

Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontology 2000. 2006 Jun;41(1):136–56.

Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials. 2009 Feb;30(5):736–42.

Lamolle SF, Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J Biomedical Materials Res. 2009 Mar;88A(3):581–8.

Rønold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials. 2003 Nov;24(25):4559–64.

Raes F, Renckens L, Aps J, Cosyn J, De Bruyn H. Reliability of Circumferential Bone Level Assessment around Single Implants in Healed Ridges and Extraction Sockets Using Cone Beam CT. Clin Implant Dent Rel Res. 2013 Oct;15(5):661–72.

Collaert B, Wijnen L, De Bruyn H. A 2-year prospective study on immediate loading with fluoride-modified implants in the edentulous mandible. Clinical Oral Implants Res. 2011 Oct;22(10):1111–6.

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland, Saulacic N, Bosshardt D, Bornstein M, Berner S, Buser C. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. eCM. 2012 Apr 10;23:273–88.

Geurs NC, Vassilopoulos PJ, Reddy MS. Soft Tissue Considerations in Implant Site Development. Oral and Maxillofacial Surgery Clinics of North America. 2010 Aug;22(3):387–405.

Okazaki Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials. 2002 May;23(9):2071–7.

Ye W, Mi X, Song X. Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium. Rare Metals. 2012 Jun;31(3):227–30.

Thibon I, Ansel D, Gloriant T. Interdiffusion in ß-Ti–Zr binary alloys. Journal of Alloys and Compounds. 2009 Feb;470(1–2):127–33.

Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci: Mater Med. 2008 Oct;19(10):3179–86.

Grandin HM, Berner S, Dard M. A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants. Materials. 2012 Aug 13;5(8):1348–60.

Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a New Titanium-Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig. Clin Implant Dent Rel Res. 2012 Aug;14(4):538–45.

Ferreira EA, Rocha-Filho RC, Biaggio SR, Bocchi N. Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corrosion Science. 2010 Dec;52(12):4058–63.

Wen CE, Yamada Y, Hodgson PD. Fabrication of novel TiZr alloy foams for biomedical applications. Materials Science and Engineering: C. 2006 Sep;26(8):1439–44.

Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching. Materials Science and Engineering: C. 2013 Apr;33(3):1282–8.

Gómez-Florit M, Ramis JM, Xing R, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, et al. Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces. J of Periodontal Research. 2014 Aug;49(4):425–36.

Xing R, Lyngstadaas SP, Ellingsen JE, Taxt-Lamolle S, Haugen HJ. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clinical Oral Implants Res. 2015 Jun;26(6):649–56.

Kopova I, Stráský J, Harcuba P, Landa M, Janecek M, Bacákova L. Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Materials Science and Engineering: C. 2016 Mar;60:230–8.

Mat-Baharin NH, Razali M, Mohd-Said S, Syarif J, Muchtar A. Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials. Journal of Prosthodontic Research. 2020 Oct;64(4):490–7.

Stepanovska J, Matejka R, Rosina J, Bacakova L, Kolarova H. Treatments for enhancing the biocompatibility of titanium implants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020 Mar 26;164(1):23–33.

De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W, et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontology 2000. 2017 Feb;73(1):218–27.

Linkevicius T, Apse P. Influence of abutment material on stability of peri-implant tissues: a systematic review. International Journal of Oral & Maxillofacial Implants. 2008 Jun 1;23(3).

Kohal RJ, Weng D, Bächle M, Strub JR. Loaded Custom-Made Zirconia and Titanium Implants Show Similar Osseointegration: An Animal Experiment. Journal of Periodontology. 2004 Sep;75(9):1262–8.

Andersson B, Glauser R, Maglione M, Taylor A. Ceramic implant abutments for short-span FPDs: a prospective 5-year multicenter study. Int J Prosthodont. 2003;16(6):640–6.

Kheder W, Al Kawas S, Khalaf K, Samsudin AR. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. Jpn Dent Sci Rev. 2021 Nov;57:182-189.

Eftekhar Ashtiani, Reza et al. “The Role of Biomaterials and Biocompatible Materials in Implant-Supported Dental Prosthesis.” Evidence-based Complementary and Alternative Medicine : eCAM 2021 (2021)

Umar, Madiha & Bari, Tayyaba & Fahimullah, Dr & Qasim, Rimsha & Khursheed, Hadia & Tasleem, Robina & azam, Dr. (2024). DEVELOPMENT OF NOVEL BIOCOMPATIBLE MATERIALS FOR DENTAL IMPLANTS. Journal of Population Therapeutics & Clinical Pharmacology. 599-609. 10.53555

Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. Materials (Basel). 2022 Apr 27;15(9):3150.

Hoornaert A, Vidal L, Besnier R, Morlock JF, Louarn G, Layrolle P. Biocompatibility and osseointegration of nanostructured titanium dental implants in minipigs. Clin Oral Implants Res. 2020 Jun;31(6):526-535.

W. Nicholson J. Titanium Alloys for Dental Implants: A Review. Prosthesis. 2020; 2(2):100-116.





DOI: https://www.doi.org/10.53766/AcBio/

Se encuentra actualmente indizada en:

tanaman herbal berkhasiat obat  

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.