Modulación de la microbiota intestinal y patogénesis de la obesidad

Jorly Mejia Montilla, Nadia Reyna Villasmil, Alfonso Bravo Henríquez, Andreina Fernández Ramírez, Eduardo Reyna Villasmil

Resumen


La microbiota intestinal es el grupo de microorganismos que colonizan el tracto gastrointestinal. El número de estos supera diez veces el número de células somáticas y cien veces el número de genes del huésped. La microbiota intestinal en el cuerpo humano tiene funciones en el proceso de digestión de alimentos, absorción de energía y modulación inmunitaria, fundamentales para el mantenimiento de la salud. Los cambios en la composición de la microbiota intestinal inicia después del nacimiento por los efectos de la nutrición y estado metabólico. Las modificaciones de la composición han llamado la atención sobre su papel en el desarrollo de la obesidad, ya que la disbiosis puede alterar la permeabilidad de la barrera intestinal, lo que conduce a cambios metabólicos asociados a endotoxemia. Los cambios benéficos de la composición pueden lograrse a través tanto de la modificación de hábitos dietéticos como con el uso de algunas sustancias que promueven estos cambios. La modulación de los efectos de la microbiota intestinal con el uso de prebióticos y probióticos ha demostrado efectos en parámetros tanto antropométricos como metabólicos. El objetivo de esta revisión fue evaluar la asociación entre la modulación de la microbiota intestinal y la patogénesis de la obesidad.

Recibido: 25 de Enero de 2021
Aceptado: 11 Junio de 2022
Publicado online: 20 de Junio de 2022


Palabras clave


La microbiota intestinal es el grupo de microorganismos que colonizan el tracto gastrointestinal. El número de estos supera diez veces el número de células somáticas y cien veces el número de genes del huésped. La microbiota intestinal en el cuerpo humano

Texto completo:

PDF

Referencias


Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018; 61: 142-150. [PubMed] [Google Scholar]

Bradwisch SA, Smith EM, Mooney C, Scaccia D. Obesity in children and adolescents: An overview. Nursing. 2020; 50: 60-6. [PubMed] [Google Scholar]

Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020; 11: 571731. [PubMed] [Google Scholar]

El Aidy S, Van den Abbeele P, Van de Wiele T, Louis P, Kleerebezem M. Intestinal colonization: how key

microbial players become established in this dynamic process: microbial metabolic activities and the interplay between the host and microbes. Bioessays. 2013; 35: 913-23. [PubMed] [Google Scholar]

Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J. A metagenomic insight into our gut's microbiome. Gut. 2013; 62: 146-58. [PubMed] [Google Scholar]

Yin R, Kuo HC, Hudlikar R, Sargsyan D, Li S, Wang L, Wu R, Kong AN. Gut microbiota, dietary phytochemicals and benefits to human health. Curr Pharmacol Rep. 2019; 5: 332-344. [PubMed] [Google Scholar]

Sánchez-Alcoholado L, Ordóñez R, Otero A, Plaza-Andrade I, Laborda-Illanes A, Medina JA, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int J Mol Sci. 2020; 21: 6782. [PubMed] [Google Scholar]

Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: An overview. Int J Environ Res Public Health. 2020; 17: 7618. [PubMed] [Google Scholar]

Davis EC, Dinsmoor AM, Wang M, Donovan SM. Microbiome composition in pediatric populations from birth to adolescence: Impact of diet and prebiotic and probiotic interventions. Dig Dis Sci. 2020; 65: 706-22. [PubMed] [Google Scholar]

Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. [PubMed] [Google Scholar]

Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A. 2010; 107: 7503-8. [PubMed] [Google Scholar]

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010; 107: 14691-6. [PubMed] [Google Scholar]

Dourado E, Ferro M, Sousa Guerreiro C, Fonseca JE. Diet as a modulator of intestinal microbiota in rheumatoid arthritis. Nutrients. 2020; 12: 3504. [PubMed] [Google Scholar]

Just S, Mondot S, Ecker J, Wegner K, Rath E, Gau L, Streidl T, Hery-Arnaud G, Schmidt S, Lesker TR, Bieth V, Dunkel A, Strowig T, Hofmann T, Haller D, Liebisch G, Gérard P, Rohn S, Lepage P, Clavel T. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome. 2018; 6: 134. [PubMed] [Google Scholar]

Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C. Human intestinal microbiota: Interaction between parasites and the host immune response. Arch Med Res. 2017; 48: 690-700. [PubMed] [Google Scholar]

Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis. 2015; 60(Suppl 2): S108-21. [PubMed] [Google Scholar]

Kayama H, Takeda K. Functions of innate immune cells and commensal bacteria in gut homeostasis. J Biochem. 2016; 159: 141-9. [PubMed] [Google Scholar]

Kallus SJ, Brandt LJ. The intestinal microbiota and obesity. J Clin Gastroenterol. 2012; 46: 16-24. [PubMed] [Google Scholar]

Beaumont M, Blachier F. Amino acids in intestinal physiology and health. Adv Exp Med Biol. 2020; 1265: 1-20. [PubMed] [Google Scholar]

Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020; 8: 1715. [PubMed] [Google Scholar]

Santos-Marcos JA, Perez-Jimenez F, Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutr Biochem. 2019; 70: 1-27. [PubMed] [Google Scholar]

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010; 18: 190-5. [PubMed] [Google Scholar]

Hur KY, Lee MS. Gut microbiota and metabolic disorders. Diabetes Metab J. 2015; 39: 198-203. [PubMed] [Google Scholar]

Lichtman SM. Bacterial translocation in humans. J Pediatr Gastroenterol Nutr. 2001; 33: 1-10. [Google Scholar]

Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev. 2018; 31: 35-51. [PubMed] [Google Scholar]

Marzullo P, Di Renzo L, Pugliese G, De Siena M, Barrea L, Muscogiuri G, Colao A, Savastano S; From Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. Int J Obes Suppl. 2020; 10: 35-49. [PubMed] [Google Scholar]

Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013; 34: 39-58. [PubMed] [Google Scholar]

Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol. 2019; 13: 3-15. [PubMed] [Google Scholar]

Liu JL, Segovia I, Yuan XL, Gao ZH. Controversial roles of gut microbiota-derived short-chain fatty acids (SCFAs) on pancreatic beta-cell growth and insulin secretion. Int J Mol Sci. 2020; 21: 910. [PubMed] [Google Scholar]

Watnick PI, Jugder BE. Microbial control of intestinal homeostasis via enteroendocrine cell innate immune signaling. Trends Microbiol. 2020; 28: 141-9. [PubMed] [Google Scholar]

Suganya K, Koo BS. Gut-Brain Axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci. 2020;21: 7551. [PubMed] [Google Scholar]

Machate DJ, Figueiredo PS, Marcelino G, Guimarães RCA, Hiane PA, Bogo D, Pinheiro VAZ, Oliveira LCS, Pott A. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci. 2020; 21: 4093. [PubMed] [Google Scholar]

Matijašic BB, Obermajer T, Lipoglavšek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014; 53: 1051-64. [PubMed] [Google Scholar]

Bell DS. Changes seen in gut bacteria content and distribution with obesity: causation or association? Postgrad Med. 2015; 127: 863-8. [Google Scholar]

Zhang W, Hartmann R, Tun HM, Elson CO, Khafipour E, Garvey WT. Deletion of the Toll-Like Receptor 5 gene per se does not determine the gut microbiome profile that induces metabolic syndrome: Environment trumps genotype. PLoS One. 2016; 11: e0150943. [PubMed] [Google Scholar]

Ademe M. Benefits of fecal microbiota transplantation: A comprehensive review. J Infect Dev Ctries. 2020; 14: 1074-80. [PubMed] [Google Scholar]

Granata I, Nardelli C, D'Argenio V, Tramontano S, Compare D, Guarracino MR, Nardone G, Pilone V, Sacchetti L. Duodenal metatranscriptomics to define human and microbial functional alterations associated with severe obesity: A pilot study. Microorganisms. 2020; 8: 1811. [PubMed] [Google Scholar]

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009; 58: 1091-103. [PubMed] [Google Scholar]

Batista VL, da Silva TF, de Jesus LCL, Coelho-Rocha ND, Barroso FAL, Tavares LM, Azevedo V, Mancha-Agresti P, Drumond MM. Probiotics, prebiotics, synbiotics, and paraprobiotics as a therapeutic alternative for intestinal mucositis. Front Microbiol. 2020; 11: 544490. [PubMed] [Google Scholar]

Woting A, Pfeiffer N, Hanske L, Loh G, Klaus S, Blaut M. Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res. 2015; 59: 2267-78. [PubMed] [Google Scholar]

Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res. 2005; 13: 1000-7. [PubMed] [Google Scholar]

Archer BJ, Johnson SK, Devereux HM, Baxter AL. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br J Nutr. 2004; 91: 591-9. [Google Scholar]

Korczak R, Slavin JL. Fructooligosaccharides and appetite. Curr Opin Clin Nutr Metab Care. 2018; 21: 377-80. [PubMed]

Garcia AL, Steiniger J, Reich SC, Weickert MO, Harsch I, Machowetz A, Mohlig M, Spranger J, Rudovich NN, Meuser F, Doerfer J, Katz N, Speth M, Zunft HJ, Pfeiffer AH, Koebnick C. Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance. Horm Metab Res. 2006; 38: 761-6. [PubMed] [Google Scholar]

Chen SC, Lin YH, Huang HP, Hsu WL, Houng JY, Huang CK. Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition. 2012; 28: 559-65. [PubMed] [Google Scholar]

Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016; 7: 979. [PubMed] [Google Scholar]

Ghini V, Tenori L, Pane M, Amoruso A, Marroncini G, Squarzanti DF, Azzimonti B, Rolla R, Savoia P, Tarocchi M, Galli A, Luchinat C. Effects of probiotics administration on human metabolic phenotype. Metabolites. 2020; 10: 396. [PubMed] [Google Scholar]

Cheng YC, Liu JR. Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity. Nutrients. 2020; 12: 2557. [PubMed] [Google Scholar]

Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, Jakobsen M, Pedersen BK. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010; 104: 1831-8. [PubMed] [Google Scholar]

Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr. 2014; 53: 599-606. [PubMed] [Google Scholar]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.