Mecanismos implicados en la respuesta inflamatoria asociada al consumo de productos finales de glicación avanzada de origen dietético

Patricio Salazar, Diego Tene, Adriana Pedreáñez

Resumen


Los productos finales de glicación avanzada (AGEs), son un grupo variado de compuestos que se forman como resultado de la reacción no enzimática entre un azúcar reductor como la glucosa y los grupos NH2 libres de un aminoácido, en una proteína u otra biomolécula. La reacción química que genera estos compuestos es conocida como reacción de Maillard y ocurre como parte del metabolismo normal, pero también puede producirse durante la preparación, procesamiento y conservación de ciertos alimentos. Por lo tanto, los AGEs también pueden obtenerse de la dieta (d-AGEs). En esta revisión narrativa abordamos el conocimiento actual de estos productos y su impacto en la activación de mecanismos inflamatorios que subyacen a diferentes patologías incluyendo la alergia alimentaria. Para ello se realizó una búsqueda bibliográfica en PubMed aplicando los siguientes términos: Maillard reaction, Advanced glycation end products, RAGE, Inflammation, Diet, food allergy. El análisis realizado de esta revisión nos permite concluir que la reacción de Maillard, acelerada por el procesamiento y tratamiento térmico de ciertos alimentos induce la formación de d-AGEs, los cuales, al ingerirse, contribuyen a incrementar el pool de AGEs sistémico y además generar neoantígenos con propiedades alergénicas. Esta elevación puede por un lado inducir reacciones de hipersensibilidad y también sobre estimular células inmunitarias atraídas por los AGEs atrapados en los tejidos glicados, e inducir inflamación crónica de bajo grado, provocando disfunción, daño tisular persistente y una reconstrucción deficiente después de estos daños.

Aceptado: 16 de Julio de 2023
Recibido: 29 de Octubre de 2022
Publicado online: 20 de Julio de 2023


Palabras clave


Reacción de Maillard; Productos finales de glicación avanzada; RAGE; Inflamación; Dieta; Alergia alimentaria

Texto completo:

PDF

Referencias


Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep 2014; 14:453. doi: 10.1007/s11892-013-0453-1.

[PubMed] [Google Scholar]

Liang Z, Chen X, Li L, Li B, Yang Z. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit Rev Food Sci Nutr 2020;

: 3475-91. doi: 10.1080/10408398.2019.1693958. [PubMed] [Google Scholar]

Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, Salonia A, Montorsi F, Vago R. The Modern Western Diet Rich in Advanced Glycation End-Products

(AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients. 2019 Jul 30;11:1748. doi: 10.3390/nu11081748. [PubMed] [Google Scholar]

Fotheringham AK, Gallo LA, Borg DJ, Forbes JM. Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients. 2022 Jun 28;14: 2675. doi: 10.3390/nu14132675 [PubMed][Google Scholar]

Chrysanthou M, Miro Estruch I, Rietjens IMCM, Wichers HJ, Hoppenbrouwers T. In Vitro Methodologies to Study the Role of Advanced Glycation End Products

(AGEs) in Neurodegeneration. Nutrients. 2022; 14: 363. doi: 10.3390/nu14020363. [PubMed][Google Scholar]

Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ. How Can Diet Affect the Accumulation of Advanced Glycation End-Products in the Human Body? Foods. 2016; 5: 84. doi: 10.3390/foods5040084. [PubMed][Google Scholar]

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules. 2019; 9: 888. doi: 10.3390/biom9120888. [PubMed][Google Scholar]

Kellow NJ, Coughlan MT. Effect of dietderived advanced glycation end products on inflammation. Nutr Rev 2015; 73: 737-59. doi: 10.1093/nutrit/nuv030. [PubMed]

Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem 2020; 30:1-13. doi:

1080/13813455.2020.1797106. [PubMed] [Google Scholar]

Yu W, Fan L, Wang M, Cao B, Hu X. Pterostilbene Improves Insulin Resistance Caused by Advanced Glycation End Products (AGEs) in Hepatocytes and Mice. Mol Nutr Food Res 2021; 65: e2100321. doi: 10.1002/mnfr.202100321. [PubMed][Google Scholar]

Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb 2018; 25: 27-39. doi: 10.5551/jat.RV17014. Epub 2017 Sep 29.[PubMed] [Google Scholar]

Ruiz HH, Ramasamy R, Schmidt AM. Advanced Glycation End Products: Building on the Concept of the "Common Soil" in Metabolic Disease. Endocrinology 2020; 161: bqz006. doi: 10.1210/endocr/bqz006. [PubMed][Google Scholar]

Peppa M, Mavroeidi I. Experimental Animal Studies Support the Role o Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021; 13:3467. doi: 10.3390/nu13103467. [PubMed] [Google Scholar]

Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to

their reduction in the diet. Jam. Diet Association 2010; 110 :911–6. doi: 10.1016/j.jada.2010.03.018. [PubMed][Google Scholar]

Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2018; 58: 208-26. doi:

1080/10408398.2016.1152949. [PubMed] [Google Scholar]

Salazar J, Navarro C, Ortega Á, Nava M, Morillo D, Torres W, Hernández M, Cabrera M, Angarita L, Ortiz R, Chacín M, D'Marco L, Bermúdez V. Advanced Glycation End Products: New Clinical and Molecular Perspectives. Int J Environ Res Public Health 2021 ;18: 7236. doi: 10.3390/ijerph18147236. [PubMed][Google Scholar]

Maillard L.C. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compt Rend. 1912;154: 66-8. [Google Scholar]

Johnson KL, Williams JG, Maleki SJ, Hurlburt BK, London RE, Mueller GA. Enhanced Approaches for Identifying Amadori Products: Application to Peanut Allergens. J Agric Food Chem 2016; 64:1406-13. doi: 10.1021/acs.jafc.5b05492. [PubMed] [Google Scholar]

D'Alessandro A, Mirasole C, Zolla L. Haemoglobin glycation (Hb1Ac) increases during red blood cell storage: a MALDITOF mass-spectrometry-based investigation. Vox Sang 2013;105: 177-80. doi: 10.1111/vox.12029. [PubMed][Google Scholar]

Luo Y, Li S, Ho CT. Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules 2021; 26: 4314. doi: 10.3390/molecules26144314. [PubMed]

[Google Scholar]

Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, Skibsted LH, Dragsted LO. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 2013; 60: 10-37. doi: 10.1016/j.fct.2013.06.052. [PubMed][Google Scholar]

Gupta A, Uribarri J. Dietary Advanced Glycation End Products and Their Potential Role in Cardiometabolic Disease in Children. Horm Res Paediatr 2016;85: 291-300. doi: 10.1159/000444053. [PubMed][Google Scholar]

Lund MN, Ray CA. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J Agric Food Chem 2017; 65: 4537-52. doi: 10.1021/acs.jafc.7b00882. [PubMed][Google Scholar]

Chuyen NV. Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs. Mol Nutr Food Res. 2006; 50:1140-9. doi: 10.1002/mnfr.200600144. [PubMed][Google Scholar]

Sahi AK, Verma P, Varshney N, Gundu S, Mahto SK. Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol. 2022; 194: 2831-2855. doi: 10.1007/s12010-022-03860-5. [PubMed] [Google Scholar]

Troise AD, Fogliano V, Vitaglione P, Berton-Carabin CC. Interrelated Routes between the Maillard Reaction and Lipid Oxidation in Emulsion Systems. J Agric Food Chem. 2020; 68: 12107-15. doi: 10.1021/acs.jafc.0c04738.[PubMed] [Google Scholar]

Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004 Aug;104(8):1287-91. doi: 10.1016/j.jada.2004.05.214. Erratum in: J Am Diet Assoc. 200; 5105:647. [PubMed] [Google Scholar]

Inan-Eroglu E, Ayaz A, Buyuktuncer Z. Formation of advanced glycation endproducts in foods during cooking process and underlying mechanisms: a comprehensive review of experimental studies. Nutr Res Rev. 2020; 33: 77-89. doi: 10.1017/S0954422419000209.[PubMed] [Google Scholar]

Henle T. Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids. 2005; 29: 313-22. doi: 10.1007/s00726-005-0200-2. [PubMed] [Google Scholar]

Gil A, Bengmark S. Productos finales de la glicación y de la lipoxidación como amplificadores de la inflamación: papel de los alimentos. Nutr Hosp. 2007; 22:

-40. Spanish. [PubMed] [Google Scholar]

Wang C, Lu Y, Huang Q, Zheng T, Sang S, Lv L. Levels and formation of a-dicarbonyl compounds in beverages and the preventive effects of flavonoids. J Food

Sci Technol. 2017; 54: 2030-2040. doi: 10.1007/s13197-017-2639-z. [PubMed][Google Scholar]

Capurso C, Bellanti F, Lo Buglio A, Vendemiale G. The Mediterranean Diet Slows Down the Progression of Aging and Helps to Prevent the Onset of Frailty: A

Narrative Review. Nutrients. 2019; 12: 35. doi: 10.3390/nu12010035. [PubMed][Google Scholar]

Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean Diet; a Literature Review. Nutrients. 2015;7:9139-53. doi: 10.3390/nu7115459. [PubMed] [Google Scholar]

Urquiaga I, Echeverría G, Dussaillant C, Rigotti A. Origen, componentes y posibles mecanismos de acción de la dieta mediterránea [Origin, components and

mechanisms of action of the Mediterranean diet]. Rev Med Chil. 2017;145: 85-95. Spanish. doi: 10.4067/S0034-98872017000100012. [PubMed] [Google Scholar]

Lacatu?u CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The Mediterranean Diet: From an Environment-Driven Food Culture to an Emerging Medical Prescription. Int J Environ Res Public Health. 2019;16: 942. doi: 10.3390/ijerph16060942. [PubMed][Google Scholar]

Llorente-Cortés V, Estruch R, Mena MP, Ros E, González MA, Fitó M, LamuelaRaventós RM, Badimon L. Effect of Mediterranean diet on the expression of

pro-atherogenic genes in a population at high cardiovascular risk. Atherosclerosis. 2010; 208: 442-50. doi: 10.1016/j.atherosclerosis.2009.08.004.[PubMed] [Google Scholar]

Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E; PREDIMED INVESTIGATORS. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog Cardiovasc Dis. 2015; 58: 50-60. doi: 10.1016/j.pcad.2015.04.003. [PubMed][Google Scholar]

Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, Estruch R, Covas MI, Corella D, Arós F, Ruiz-Gutiérrez V, Ros E;

PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011 Jan;34(1):14-9. doi: 10.2337/dc10-1288. Epub 2010 Oct 7. Erratum in: Diabetes Care. 2018; 41:2259-2260. [PubMed] [Google Scholar]

Lopez-Moreno J, Quintana-Navarro GM, Camargo A, Jimenez-Lucena R, DelgadoLista J, Marin C, Tinahones FJ, Striker GE, Roche HM, Perez-Martinez P, LopezMiranda J, Yubero-Serrano EM. Dietary fat quantity and quality modifies advanced glycation end products metabolism in patients with metabolic syndrome. Mol Nutr Food Res. 2017; 61. doi: 10.1002/mnfr.201601029. [PubMed][Google Scholar]

Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013; 47 Suppl 1:3-27. doi: 10.3109/10715762.2013.815348. [PubMed] [Google Scholar]

Scheijen J, Clevers E, Engelen L, Dagnelie PC, Brouns F, Stehouwer CDA, Schalkwijk CG. Analysis of advanced glycation endproducts in selected food items by

ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem 2016; 190:1145-1150. doi: 10.1016/j.foodchem.2015.06.049.[PubMed] [Google Scholar]

Koschinsky T, He C, Mitsuhashi T, Bucala R, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): An

environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA. 1997; 94:6474-9. doi: 10.1073/pnas.94.12.6474. [PubMed][Google Scholar]

Munch G, Schicktanz D, Behme A, Gerlach M, Riederer P, Palm D, Schinzel R. Amino acid specificity of glycation and proteinAGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol 1999; 17:1006-10. doi: 10.1038/13704. [PubMed] [Google Scholar]

Alamir I, Niquet-leridon C, Jacolot P, Rodriguez C, Orosco M, Anton P, Tessier F. Digestibility of extruded proteins and metabolic transit of necarboxymethyllysine in rats. Amino Acids 2013; 44: 1441–9. doi: 10.1007/s00726-012-1427-3. [PubMed] [Google Scholar]

Delgado-Andrade C. Carboxymethyllysine: thirty years of investigation in the field of AGE formation. Food Funct 2016; 7: 46-57. doi: 10.1039/c5fo00918a. [PubMed][Google Scholar]

Faist V, Erbersdobler HF. Metabolic transit and in vivo effects of melanoidins and precursor compounds deriving from the Maillard reaction. Ann Nutr Metab 2001;45: 1-12. doi: 10.1159/000046699. [PubMed][Google Scholar]

Roncero-Ramos I, Delgado-Andrade C, Tessier FJ, Niquet-Léridon C, Strauch C, Monnier VM, Navarro MP. Metabolic transit of N(e)-carboxymethyl-lysine after consumption of AGEs from bread crust. Food Funct. 2013;4: 1032-9. doi: 10.1039/c3fo30351a. [PubMed][Google Scholar]

Förster A, Kühne Y, Henle T. Studies on absorption and elimination of dietary maillard reaction products. Ann N Y Acad Sci. 2005; 1043: 474-81. doi:

1196/annals.1333.054. [PubMed][Google Scholar]

Birlouez-Aragon I, Saavedra G, Tessier F, Galinier A, Ait-Ameur L, Lacoste F, Niamba C, Alt N, Somoza V, Lecerf J. A diet based on high-heat-treated foods

promotes risk factors for diabetes mellitus and cardiovascular diseases. Am. J. Clin. Nutr 2010; 91:1220–6. doi: 10.3945/ajcn.2009.28737. [PubMed][Google Scholar]

Vlassara H, Striker G. AGE restriction in diabetes mellitus: A paradigm shift. Nat. Rev. Endocrinol 2011;7:526–39. doi: 10.1038/nrendo.2011.74. [PubMed] [Google Scholar]

Cai W, Ramdas M, Zhu L, Chen X, Striker G, Vlassara H. Oral advanced glycation end products (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. USA 2012;109:15888–93. doi: 10.1073/pnas.1205847109. [PubMed][Google Scholar]

Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, Tansman L, Chen X, Mani V, Fayad ZA, Nadkarni GN, Striker GE, He JC, Uribarri J. Oral AGE restriction

ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia 2016; 59: 2181-92. doi: 10.1007/s00125-016-4053-x. [PubMed][Google Scholar]

Sant S, Wang D, Agarwal R, Dillender S, Ferrell N. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biol Plus 2020; 8:100035. doi: 10.1016/j.mbplus.2020.100035. [PubMed] [Google Scholar]

Harmel R, Fiedler D. Features and regulation of non-enzymatic posttranslational modifications. Nat Chem Biol 2018; 14: 244-52. doi: 10.1038/nchembio.2575. [PubMed][Google Scholar]

Svensson RB, Smith ST, Moyer PJ, Magnusson SP. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles

tendons. Acta Biomater 2018;70: 270-80. doi: 10.1016/j.actbio.2018.02.005. [PubMed] [Google Scholar]

Gautieri A, Passini FS, Silván U, GuizarSicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG. Advanced glycation endproducts: Mechanics of aged collagen from molecule to tissue. Matrix Biol 2017; 59: 95-108. doi: 10.1016/j.matbio.2016.09.001. [PubMed] [Google Scholar]

Verzijl N, DeGroot J, Ben ZC, BrauBenjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 2002; 46: 114-23 [PubMed] [Google Scholar]

Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic

review. Scars, Burn Heal 2016;2:1-14.doi:10.1177/2059513116676828. [PubMed] [Google Scholar]

Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem 1992;267: 12404-7. [PubMed] [Google Scholar]

Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as Exogenous Boosters of Inflammation. Nutrients 2021;13: 2802. doi: 10.3390/nu13082802. [PubMed] [Google Scholar]

Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara H. Circulating glycotoxins and dietary advanced glycation endproducts: Two

links to inflammatory response, oxidative stress, and aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci 2007; 62: 427–33. doi: 10.1093/gerona/62.4.427. [PubMed][Google Scholar]

Garay-Sevilla M, Beeri M, de la Maza M, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation end products in the development of chronic non-infectious diseases: A narrative review. Nutr. Res. Rev. 2020; 33: 298–311. doi: 10.1017/S0954422420000104. [PubMed][Google Scholar]

Muscat S, Pelka J, Hegele J, Weigle B, Münch G, Pischetsrieder M. Coffee and Maillard products activate NF-kappaB in macrophages via H2O2 production. Mol

Nutr Food Res. 2007; 51: 525–35. Doi: 10.1002/mnfr.200600254. [PubMed][Google Scholar]

Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 14998-5004. [PubMed] [Google Scholar]

Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 2011; 36: 625-32. doi: 10.1016/j.tibs.2011.08.008. [PubMed][Google Scholar]

Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med 2018; 69: 349-364. doi: 10.1146/annurev-med-041316-085215. [PubMed] [Google Scholar]

Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci. 2001;6:D1151-60. doi: 10.2741/Schmidt.[PubMed] [Google Scholar]

Juranek J, Mukherjee K, Kordas B, Zalecki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull. 2022; 38:1248-62. doi: 10.1007/s12264-022-00878-x. [PubMed] [Google Scholar]

Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97: 889-901. doi: 10.1016/s0092-8674(00)80801-6.[PubMed] [Google Scholar]

Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ 2013; 37: 284-91. doi: 10.1152/advan.00058.2013. [PubMed][Google Scholar]

Mosquera JA. Papel del receptor para compuestos de glicosilación avanzada (RAGE) en la inflamación [Role of the receptor for advanced glycation end products (RAGE) in inflammation]. Invest Clin 2010; 51: 257-68. Spanish. [PubMed] [Google Scholar]

Pedreañez A, Mosquera J, Munoz N, Robalino J, Tene D. Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul 2022;56: 55-5. doi: 10.2478/enr-2022-0007. [PubMed] [Google Scholar]

Muñoz N, Pedreañez A, Mosquera J. Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Can J Diabetes 2020;44: 651-6. doi: 10.1016/j.jcjd.2020.03.010. [PubMed][Google Scholar]

Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H. RAGE-mediated cell signaling. Methods Mol Biol 2013;963:239-63. doi: 10.1007/978-1-62703-230-8_15. [PubMed] [Google Scholar]

Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. RAGE and amyloid-beta

peptide neurotoxicity in Alzheimer's disease. Nature 1996;382: 685-91. doi: 10.1038/382685a0. [PubMed] [Google Scholar]

Sirois CM, Jin T, Miller AL, Bertheloot D, Nakamura H, Horvath GL, Mian A, Jiang J, Schrum J, Bossaller L, Pelka K, Garbi N, Brewah Y, Tian J, Chang C, Chowdhury PS, Sims GP, Kolbeck R, Coyle AJ, Humbles AA, Xiao TS, Latz E. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 2013;210:2447-63. doi: 10.1084/jem.20120201. [PubMed] [Google Scholar]

Ling M, Murali M. Analysis of the Complement System in the Clinical Immunology Laboratory. Clin Lab Med 2019; 39: 579-590. doi: 10.1016/j.cll.2019.07.006. [PubMed][Google Scholar]

Ruan BH, Li X, Winkler AR, Cunningham KM, Kuai J, Greco RM, Nocka KH, Fitz LJ, Wright JF, Pittman DD, Tan XY, Paulsen JE, Lin LL, Winkler DG. Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-a production in a receptor for advanced glycation end productdependent manner. J Immunol 2010;185:

-22. doi: 10.4049/jimmunol.1000863. [PubMed][Google Scholar]

Zhao Y, Luo C, Chen J, Sun Y, Pu D, Lv A, Zhu S, Wu J, Wang M, Zhou J, Liao Z, Zhao K, Xiao Q. High glucose-induced complement component 3 up-regulation

via RAGE-p38MAPK-NF-?B signalling in astrocytes: In vivo and in vitro studies. J Cell Mol Med 2018; 22: 6087-98. doi: 10.1111/jcmm.13884. [PubMed] [Google Scholar]

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019 ;20: 279-301. doi: 10.1007/s10522-019-09808-3. [PubMed][Google Scholar]

Yu W, Freeland DMH, Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 2016;16: 751-65. doi: 10.1038/nri.2016.111. [PubMed] [Google Scholar]

Sampson HA, Muñoz-Furlong A, Campbell RL, Adkinson NF Jr, Bock SA, Branum A, Brown SG, Camargo CA Jr, Cydulka R, Galli SJ, Gidudu J, Gruchalla RS, Harlor AD Jr, Hepner DL, Lewis LM, Lieberman PL, Metcalfe DD, O'Connor R, Muraro A, Rudman A, Schmitt C, Scherrer D, Simons FE, Thomas S, Wood JP, Decker WW. Second symposium on the definition and management of anaphylaxis: summary report--Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network

symposium. J Allergy Clin Immunol 2006;117: 391-7. doi: 10.1016/j.jaci.2005.12.1303. [PubMed][Google Scholar]

Verma AK, Kumar S, Das M, Dwivedi PD. Impact of thermal processing on legume allergens. Plant Foods Hum Nut 2012;67:430-41. doi: 10.1007/s11130-012-0328-7. [PubMed] [Google Scholar]

Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KC. Deciphering the black box of food allergy mechanisms. Ann Allergy Asthma Immunol 2017; 118:

-7. doi: 10.1016/j.anai.2016.10.017.[PubMed] [Google Scholar]

Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW. Endocytosis,

intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004 ;104: 3257-66. doi: 10.1182/blood-2004-03-0824. [PubMed] [Google Scholar]

Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15: 203-16. doi: 10.1038/nri3818. [PubMed] [Google Scholar]

Jiménez-Saiz R, Belloque J, Molina E, López-Fandiño R. Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. J Agric Food Chem 2011;59: 10044-51. doi: 10.1021/jf2014638. [PubMed] [Google Scholar]

Taheri-Kafrani A, Gaudin JC, Rabesona H, Nioi C, Agarwal D, Drouet M, Chobert JM, Bordbar AK, Haertle T. Effects of heating and glycation of beta-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J Agric Food Chem 2009; 57: 4974-82. doi: 10.1021/jf804038t. [PubMed] [Google Scholar]

Suhr M, Wicklein D, Lepp U, Becker WM. Isolation and characterization of natural Ara h 6: evidence for a further peanut allergen with putative clinical

relevance based on resistance to pepsin digestion and heat. Mol Nutr Food Res 2004; 48: 390-9. doi: 10.1002/mnfr.200400028. [PubMed][Google Scholar]

Teodorowicz M, van Neerven J, Savelkoul H. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients 2017 ;9: 835. doi: 10.3390/nu9080835. [PubMed][Google Scholar]

Cox AL, Eigenmann PA, Sicherer SH. Clinical Relevance of Cross-Reactivity in Food Allergy. J Allergy Clin Immunol Pract 2021; 9: 82-99. doi: 10.1016/j.jaip.2020.09.030. [PubMed][Google Scholar]

Cabanillas B, Novak N. Effects of daily food processing on allergenicity. Crit Rev FoodSci Nutr 2019;59: 31-42. doi: 10.1080/10408398.2017.1356264. [PubMed] [Google Scholar]

Davis PJ, Williams SC. Protein modification by thermal processing. Allergy 1998;53(46 Suppl):102-5. doi: 10.1111/j.1398-9995.1998.tb04975.x.[PubMed] [Google Scholar]

Jiang X, Rao Q. Effect of Processing on Fish Protein Antigenicity and Allergenicity. Foods 2021;10: 969. doi: 10.3390/foods10050969. [PubMed][Google Scholar]

Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Nonenzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrom Rev 2014;33:49-77. doi: 10.1002/mas.21378.[PubMed] [Google Scholar]

Toda M, Heilmann M, Ilchmann A, Vieths S. The Maillard reaction and food allergies: is there a link? Clin Chem Lab Med 2014;52: 61-7. doi: 10.1515/cclm-2012-0830. [PubMed][Google Scholar]

Mills EN, Sancho AI, Rigby NM, Jenkins JA, Mackie AR. Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 2009 ;53: 963-9. doi: 10.1002/mnfr.200800236. [PubMed][Google Scholar]

Malanin K, Lundberg M, Johansson SG. Anaphylactic reaction caused by neoallergens in heated pecan nut. Allergy 1995; 50: 988-91. doi: 10.1111/j.1398-

1995.tb02513.x. [PubMed] [Google Scholar]

Mueller GA, Maleki SJ, Johnson K, Hurlburt BK, Cheng H, Ruan S, Nesbit JB, Pomés A, Edwards LL, Schorzman A, Deterding LJ, Park H, Tomer KB, London

RE, Williams JG. Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products. Allergy 2013;68: 1546-54. doi: 10.1111/all.12261. [PubMed] [Google Scholar]

Teodorowicz M, Jansen A, Roovers M, Ruinemans-Koerts J, Wichers H, Savelkoul H. Maillard-type neoallergens present in processed soy extract may cause an allergic reaction in soy allergic patients. Clin. Transl. Allergy 2015;5:25. doi: 10.1186/2045-7022-5-S3-P21. [Google Scholar]

Smith P, Masilamani M, Li X, Sampson H. The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol 2017;39: 429-437. doi: 10.1016/j.jaci.2016.05.040.[PubMed] [Google Scholar]

Rai V, Agrawal D. The role of damage- and pathogen-associated molecular patterns in inflammation-mediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol 2017;95: 1245-1253. doi: 10.1139/cjpp-2016-0664. [PubMed][Google Scholar]

Leung ASY, Wong GWK, Tang MLK. Food allergy in the developing world. J Allergy Clin Immunol. 2018 Jan;141: 76-78.e1. doi: 10.1016/j.jaci.2017.11.008.

[PubMed] [Google Scholar]

Chen T, Liu X, Ma L, He W, Li W, Cao Y, Liu Z. Food allergens affect the intestinal tight junction permeability in inducing intestinal food allergy in rats. Asian Pac J Allergy Immunol. 2014; 32: 345-53. doi: 10.12932/AP0443.32.4.2014. [PubMed][Google Scholar]

Salinas E, Reyes-Pavón D, Cortes-Perez NG, Torres-Maravilla E, Bitzer-Quintero OK, Langella P, Bermúdez-Humarán LG. Bioactive Compounds in Food as a

Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms. 2021 Jul 30;9: 1634. doi: 10.3390/microorganisms9081634.[PubMed] [Google Scholar]

Chen T, Liu X, Ma L, He W, Li W, Cao Y, Liu Z. Food allergens affect the intestinal tight junction permeability in inducing intestinal food allergy in rats. Asian Pac J Allergy Immunol. 2014; 32: 345-53. doi: 10.12932/AP0443.32.4.2014. [PubMed][Google Scholar]

Wan MLY, Ling KH, El-Nezami H, Wang MF. Influence of functional food components on gut health. Crit Rev Food Sci Nutr. 2019;59: 1927-1936. doi: 10.1080/10408398.2018.1433629.[PubMed] [Google Scholar]

Miraglia del Giudice M, De Luca MG. The role of probiotics in the clinical management of food allergy and atopic dermatitis. J Clin Gastroenterol. 2004;

(6 Suppl): S84-5. doi: 10.1097/01.mcg.0000133293.18576.d2.[PubMed] [Google Scholar]

Kunnumakkara A.B., Bordoloi D., Padmavathi G., Monisha J., Roy N.K., Prasad S., Aggarwal B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017; 174: 1325–1348. doi: 10.1111/bph.13621. [PubMed] [Google Scholar]

Wang J., Ghosh S.S., Ghosh S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J.

Physiol. Cell Physiol. 2017;312:C438–C445. doi: 10.1152/ajpcell.00235.2016.[PubMed] [Google Scholar]

Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications. Compr. Rev. Food Sci. Food

Saf 2020; 19: 2559–2587. doi: 10.1111/1541-4337.12593. [PubMed][Google Scholar]

Nowotny K, Schroter D, Schreiner M, Grune T. Dietary advanced glycation end products and their relevance for human health. Ageing Res. Rev 2018;47: 55–66.

doi: 10.1016/j.arr.2018.06.005.[PubMed] [Google Scholar]




Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados

Creative Commons License
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.