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Resumen 

 

La contribución de este trabajo está centrada  en  la  admisibilidad  robusta  de  sistemas  descriptores  (DS)  lineales  con a 

tiempo discreto y con parámetros variantes (LPV). La técnica está basada en la síntesis de controladores robustos que 

permiten garantizar índices de desempeño en  𝓗𝟐 − 𝓗∞  para  el sistema en 1lazo cerrado.  Los DS    se consideran que 

tienen incertidumbres de tipo politópicas y perturbaciones externas, tal como se describe por: 

E(ρ)xk+1 = A(ρ)xk+Bω(ρ)ωk+B(ρ)uk; yk = C(ρ)xk+D(ρ)ωk 

donde ρ es la variación paramétrica. De la caracterización de las normas 𝓗𝟐 − 𝓗∞como desigualdades matriciales lineales 

(LMI), se presentan las condiciones necesarias y suficientes para la admisibilidad en forma de LMI estricta, lo cual permite 

diseñar los controladores robustos por medio de realimentación de estados o por realimentación estática de la salida (SOF) 

por medio de herramientas computacionales. 

Palabras clave: Sistemas Descriptores, Sistemas LPV, Admisibilidad Robusta, Normas H2-H∞. 

 

 

Abstract 

 

The   contribution   of   this   work   is   centered   in   the   robust   admissibilization   of   discrete-time   linear   descrip-   tor 

systems (DS)  with  variant  parameters  (LPV).  The  technique  is  based  on   the   synthesis   of   robust   con-   trollers  that  

allow  to  obtain  performance  index  in    𝓗𝟐 − 𝓗∞for   the   closed-loop   system.   The   DS   are considered to have 

parametric uncertainties of polytopic type and external perturbations, as described by: 

E(ρ)xk+1 = A(ρ)xk+Bω(ρ)ωk+B(ρ)uk; yk = C(ρ)xk+D(ρ)ωk 

where ρ is the parametric variation. From the characterization of the 𝓗𝟐 − 𝓗∞norms as a Linear Matrix Inequality (LMI), 

the necessary and sufficient admissibility conditions in strict LMI form are derived, which allow to design the robust 

controllers by state feedback or static output feedback (SOF) using computational tools. 

Keywords: Descriptor Systems, LPV Systems, Robust Admissibility, H2-H∞ norms. 

  

 

1 Introducción 

Since its introduction in 1977 (Luenberger, 1977), 

descriptor systems (DS) have been one of the main research 

fields within control theory. Unlike their regular counterparts 

in state space, a DS allows a representation that incorporates 

algebraic constraints in their physical variables. 

On the other hand, the context of linear parameter 

variable (LPV) systems refers to linear dynamical systems 

whose state-space representations depend on exogenous non-

stationary parameters (Shamma, 2012). LPV systems are a 

generalization of LTV systems (Duan, Yu, 2013; Briat, 

2008). 

When there are combined the modeling of physical 

systems with uncertain parameters, there arise dynamic 

systems representing uncertain DS. As is well known, for 

modeling many applications and technical processes, only 

approximate models are available, so that the analysis of DS 

subject to uncertainties has been a very active research line, 

(Chadli et al., 2017; Feng, Yagoubi, 2017; Zhang et al., 
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2019). 

In that order of ideas, one of the main research topics 

has been the robust admissibility of DS, which has been 

focused on the state feedback control and ℋ∞- 

norm,(González et al., 2017; Barbosa et al., 2018; Rodrı́guez 

et al., 2018; Chang, Wang, 2021). In order to extend these 

results to the case of ℋ2 control, in this paper the robust 

admissibilization of discrete-time linear descriptor systems 

(DS) with variant parameters (LPV) is studied. A technique 

for robust admissibility is presented, which consists of the 

design of robust controllers based on the characterization of 

the ℋ2- norm as LMIs, (Pipeleersa et al., 2009; Hilhorst et 

al., 2014). 

Thus, in this paper the robust admissibilization of DS 

type LPV is studied. A technique for robust admissibility is 

presented, which consists of the design of robust controllers 

based on the characterization of the ℋ2- norm as LMIs, i.e. 

Let be discrete-time linear system 

𝑥𝑘+1 = 𝐴𝑥𝑘                                                            (1) 

then, the following results provide LMI formulation of the 

robust stability condition: 

Lemma 1 (Robust stability). 1) There exists a matrix 𝑃 =
𝑃𝑇 > 0 such that 

 

 𝐴𝑇𝑃𝐴 − 𝑃 < 0        (2) 

 

2) There exist a matrix 𝑃 = 𝑃𝑇 > 0 and a matrix 𝐺 

such that 

 

 [−𝑃 𝐴𝑇𝐺𝑇

𝐺𝐴 −𝐺 − 𝐺𝑇 + 𝑃
] < 0      (3) 

 

Proof. See (Grman et al. 2005; Scholz 2015).  

 

If (1) is a polytopic LPV system, i.e. 

𝑥𝑘+1 = 𝐴(𝜌)𝑥𝑘 = ∑𝜌𝑖

𝑁

𝑖=1

𝐴𝑖𝑥𝑘,  

                 with ∑ 𝜌𝑖
𝑁
𝑖=1 = 1,∀𝜌𝑖 ≥ 0        

   (4) 

then: 

 

Lemma 1.2 (Robust stability for LPV system).  There exist 

a matrix 𝑃𝑖 = 𝑃𝑖
𝑇 > 0 and a matrix 𝐺 such that 

[
−𝑃𝑖 𝐴𝑖

𝑇𝐺𝑇

𝐺𝐴𝑖 −𝐺 − 𝐺𝑇 + 𝑃𝑖

] < 0, 𝑖 = 1,2, … ,𝑁         (5) 

 

Proof. See (Grman et al. 2005; G. Zhang, Xia, and Shi 

2008).  

Consider the discrete LTI system defined by 

                      
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜔𝑘

𝑧𝑘 = 𝐶𝑥𝑘 + 𝐷𝜔𝑘
                (6) 

 

 

where 𝑥 ∈ ℜ𝑛 are the states, 𝜔𝑘 ∈ ℜ𝑚 are exogenous 

inputs (noise, disturbance); and 𝑧𝑘 ∈ ℜ𝑞  are controlled 

outputs. The matrices 𝐴, 𝐵, 𝐶 and 𝐷 will be of appropriate 

dimensions. 

 

Lemma 1.3 (Relaxed ℋ2 performance).  Consider the 

system (6).  For 𝑃 = 𝑃𝑇 > 0, the following statements are 

equivalent: 

i) 𝐴 is stable and ∥ 𝐶(z𝕀 − 𝐴)−1𝐵 ∥2< 𝜇. 

ii) There exist 𝑃 = 𝑃𝑇 ∈ ℜ𝑛×𝑛, 𝑊 = 𝑊𝑇 ∈
ℜ𝑞×𝑞 , such that: tr(𝑊) < 𝜇2 and 

 

[
𝑃 𝑃𝐴 𝑃𝐵

𝐴𝑇𝑃 𝑃 0
𝐵𝑇𝑃 0 𝕀

] > 0, [
𝑊 𝐶 𝐷
𝐶𝑇 𝑃 0
𝐷𝑇 0 𝕀

] > 0,  (7) 

iii) There exist 𝑃 = 𝑃𝑇 ∈ ℜ𝑛×𝑛, 𝑊 = 𝑊𝑇 ∈
ℜ𝑞×𝑞 , 𝐺 ∈ ℜ𝑛×𝑛, such that: tr(𝑊) < 𝜇2 and 

 

[
𝐺 + 𝐺𝑇 − 𝑃 𝐺𝐴 𝐺𝐵

𝐴𝑇𝐺𝑇 𝑃 0
𝐵𝑇𝐺𝑇 0 𝕀

] > 0 [
𝑊 𝐶 𝐷
𝐶𝑇 𝑃 0
𝐷𝑇 0 𝕀

] > 0, 

(8) 
 

iv) There exist 𝑃 = 𝑃𝑇 ∈ ℜ𝑛×𝑛, 𝑊 = 𝑊𝑇 ∈
ℜ𝑞×𝑞  and 𝐺 ∈ ℜ𝑛×𝑛, such that: tr(𝑊) < 𝜇2 

and 

[
𝐺 + 𝐺𝑇 − 𝑃 𝐺𝐴𝑇 𝐺𝐶𝑇

𝐴𝐺𝑇 𝑃 0
𝐶𝐺𝑇 0 𝕀

] 0, [
𝑊 𝐵𝑇 𝐷𝑇

𝐵 𝑃 0
𝐷 0 𝕀

] 0, 

(9) 

 

Proof. See (Pipeleersa et al. 2009; Hilhorst et al. 2014). 
 

Lemma 1.4 (Relaxed ℋ∞ performance).  Consider the 

system (6). For 𝑃 = 𝑃𝑇 > 0 ∈ ℜ𝑛×𝑛 and 𝐺 ∈ ℜ𝑛×𝑛 , 
the following statements are equivalent: 

(i) 𝐴 is stable and ∥ 𝐶(z𝕀 − 𝐴)−1𝐵𝐷 ∥∞< 𝛾 

(ii) There exist 𝑃, such that 

 [

𝑃 𝑃𝐴 𝑃𝐵 0
𝐴𝑇𝑃 𝑃 0 𝐶𝑇

𝐵𝑇𝑃 0 𝛾𝕀 𝐷𝑇

0 𝐶 𝐷 𝛾𝕀

] > 0.   (10)  

(iii) There exist  𝑃 and 𝐺 such that 
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[

𝐺 + 𝐺𝑇 − 𝑃 𝐺𝐴 𝐺𝐵 0
𝐴𝑇𝐺𝑇 𝑃 0 𝐶𝑇

𝐵𝑇𝐺𝑇 0 𝛾𝕀 𝐷𝑇

0 𝐶 𝐷 𝛾𝕀

] > 0.  (11) 

   

(iv) There exist  𝑃 and 𝐺 such that 

[

𝐺 + 𝐺𝑇 − 𝑃 𝐺𝐴𝑇 𝐺𝐶𝑇 0
𝐴𝐺𝑇 𝑃 0 𝐵
𝐶𝐺𝑇 0 𝛾𝕀 𝐷

0 𝐵𝑇 𝐷𝑇 𝛾𝕀

] > 0. (12) 

   
 
Proof. See (Pipeleersa et al., 2009; Hilhorst et al., 2014).  

 

2 Descriptor LPV System 

 

Let be a descriptor LPV system 

 

𝐸(𝜌)𝑥𝑘+1 = 𝐴(𝜌)𝑥𝑘 + 𝐵(𝜌)𝑢𝑘

𝑦𝑘 = 𝐶(𝜌)𝑥𝑘
        (13) 

 

where 𝑥 ∈ ℝ𝑛 is the vector of descriptor variable (instead 

of state vector), 𝔼 ∈ ℝ𝑚×𝑛, with rank(𝔼) = 𝑟 and 0 <
𝑟 ≤ 𝑛 for all 𝜌, which is called the descriptor matrix. 𝐴 ∈
ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑚×𝑞 , 𝒞 ∈ ℝ𝑝×𝑛. 𝜌𝑘 ∈ ℝ𝑙  is the varying 

parameter vector 

   𝜌𝑘 ≜ [𝜌1𝑘
,  𝜌2𝑘

,  ⋯ , 𝜌𝑙𝑘]
𝑇
                  (14) 

 

The descriptor matrix 𝐸(𝜌) is assumed to be rank-

invariant, that is, rank(𝔼) = 𝑟 and 0 < 𝑟 ≤ 𝑛 for all 

admissible uncertainties 𝜌. This last asseveration is 

important for the robust admissibilization, when 𝐸 is an 

uncertain matrix, (Mao 2012). 

The range of each varying parameter 𝜌𝑖, 𝑖 =
1,2, … , 𝑙, is given by 

 

𝜌𝑖𝑘 ∈ [𝜌𝑖 , 𝜌𝑖
] , 𝜌𝑖 < 𝜌

𝑖
, 𝑖 = 1,2, … , 𝑙       (15) 

 
 

Equation (15) represents a convex hull whose number 

of the vertices is 𝑁 = 2𝑙 . It corresponds to the operating 

region of the LPV system (13) and is also called the 

parameter box. The vertex set of the parameter box (15) is 

defined by 

𝛺 ≜ {𝜌𝑘 ∈ ℝ𝑙:     𝜌𝑖𝑘 = 𝜌𝑖  or  𝜌𝑖
, 𝑖 = 1,2, … , 𝑙} 

(16) 

 

The descriptor LPV system (13) can be transformed into 

a polytopic model which is constructed by linearly 

combining LTI models in the vertex set 𝛺  (16): 

∑𝛼𝑗

𝑁

𝑗=1

(𝜌)𝐸𝑗𝑥𝑘+1 = ∑𝛼𝑗

𝑁

𝑗=1

(𝜌)𝐴𝑗𝑥𝑘 + ∑𝛼𝑗

𝑁

𝑗=1

(𝜌)𝐵𝑗𝑢𝑘

𝑦𝑘 = ∑𝛼𝑗

𝑁

𝑗=1

(𝜌)𝐶𝑗𝑥𝑘

 

(17) 

 

Thus, 

[𝐸𝑗   𝐴𝑗   𝐵𝑗   𝐶𝑗] ≜ [𝐸(𝜌𝑗)  𝐴(𝜌𝑗)  𝐵(𝜌𝑗)  𝐶(𝜌𝑗)]
 

(18) 

𝜌𝑗 ∈ 𝛺,   𝑗 = 1,2, … , 𝑁.With  ∑𝛼𝑗

𝑁

𝑗=1

= 1, 𝛼𝑗 ≥ 0 

 

In (Fujimori 2004) a general framework for to transform 

the Descriptor System (DS) (13) in form of descriptor 

polytopic models (17) is given. 

Definition 2.1.  For (13) with 𝑚 = 𝑛, if ∀𝜌, 𝑝(z) =

det(z𝐸(𝜌) − 𝐴(𝜌)) satisfies that 𝑝(z) ≠ 0, it is said 

that the pair (𝐸(𝜌), 𝐴(𝜌)) is regular. Otherwise, it is 

called singular. 

Definition 2.2.  Consider the system (13) (𝑚 = 𝑛), with 

𝜅 = deg(det(z𝐸(𝜌) − 𝐴(𝜌)). If 𝜅 = 𝑟 is said that the 

DS is of free impulse or causal. 

For the non-trivial case 𝐸(𝜌) ≠ 0, the property of free 

impulse it implies regularity. Considering that SD (13) free 

is not degenerate then it is an equivalent restrictive system 

given by 

𝑥1𝑘+1
= 𝐴1𝑥1𝑘

,  𝑁𝑥2𝑘+1
= 𝑥2𝑘

;      (19) 

 

which it is causal if 𝑁 = 0. Thus, the DS (13)  has 𝜅 finite 

dynamic modes, 𝑟 − 𝜅 impulsive modes, and 𝑛 − 𝑟 non-

dynamic modes. 

Theorem 2.1 (Stability of open-loop).  Let the system, with 

(13) the pair (𝐸(𝜌), 𝐴(𝜌)) regular ∀𝜌; and let 𝑢 = 0. 

1) For all 𝜌, the trivial solution 𝑧𝑘 = 0 of the system is 

stable if and only if all the finite eigenvalues of 

𝜆𝐸(𝜌) − 𝐴(𝜌) are within the unit circle of the 

complex plane, and the eigenvalues at the boundary are 

simple. 

2) For all 𝜌, the trivial solution 𝑧𝑘 = 0 of the system is 

asymptotically stable if and only if all the finite 

eigenvalues of 𝜆𝐸(𝜌) − 𝐴(𝜌) are within the unit 

circle of the complex plane. This means that the finite 

dynamic modes are asymptotically stable. 
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Proof  

See (Sjöberg, 2005; Duan, 2010).   

 

Definition 2.3.  Consider the system (13). It is said that the 

DS is admissible if it is regular, free impulse (causal) and 

stable. 

In which it follows, the system (13) is considered 

regular and free impulse, consequently, the system 

admissibility corresponds to its stability. 

Let consider the open-loop stability of system (13). 

Lemma2.2. Let the system (13). That system is admissible if 

and only if there exists a matrix 𝑃 = 𝑃𝑇 > 0 such that the 

following inequalities are satisfied. 

 

𝐸𝑗
𝑇𝑃 𝐸𝑗 ≥ 0,   𝐴𝑗

𝑇𝑃𝐴𝑗 − 𝐸𝑗
𝑇𝑃 𝐸𝑗 < 0 

                    𝑗 = 1,2,… , 𝑁                          (16) 

    
Proof 

Consider that exists 𝑃 = 𝑃𝑇 > 0 defining the Lyapunov 

function 𝑉(𝑥, 𝜌) = 𝑥𝑇𝐸𝑇(𝜌)𝑃𝐸(𝜌)𝑥 such that ∀ 𝜌, 

𝐸𝑇(𝜌)𝑃𝐸(𝜌) ≥ 0. Then, the stability condition 

establishes that 𝑉𝑘+1(𝑥, 𝜌) − 𝑉𝑘(𝑥, 𝜌) < 0, ∀𝜌. Thus, 

 

𝑥𝑘+1
𝑇 𝐸𝑇(𝜌)𝑃𝐸(𝜌)𝑥𝑘+1 − 𝑥𝑘

𝑇𝐸𝑇(𝜌)𝑃𝐸(𝜌)𝑥𝑘 < 0

𝑥𝑘
𝑇𝐴𝑇(𝜌)𝑃𝐴(𝜌)𝑥𝑘 − 𝑥𝑘

𝑇𝐸𝑇(𝜌)𝑃𝐸(𝜌)𝑥𝑘 < 0

𝐴𝑇(𝜌)𝑃𝐴(𝜌) − 𝐸𝑇(𝜌)𝑃𝐸(𝜌) < 0

∑𝛼𝑗

𝑁

𝑗=1

𝐴𝑗
𝑇𝑃 ∑𝛼𝑗

𝑁

𝑗=1

𝐴𝑗 − ∑𝛼𝑗

𝑁

𝑗=1

𝐸𝑗
𝑇𝑃 ∑𝛼𝑗

𝑁

𝑗=1

𝐸𝑗 < 0

 

 

Since ∑ 𝛼𝑗
𝑁
𝑗=1 = 1, then 

𝐴𝑗
𝑇𝑃𝐴𝑗 − 𝐸𝑗

𝑇𝑃𝐸𝑗 < 0,  𝑗 = 1,2, … ,𝑁 

To condition that 𝐸𝑗
𝑇𝑃𝐸𝑗 ≥ 0.    

 

Condition (16), from Schur complement, can be written 

as 

[
−𝐸𝑗

𝑇𝑃𝐸𝑗 𝐴𝑗
𝑇𝑃

𝑃𝐴𝑗 −𝑃
] < 0,  𝑗 = 1,2,… ,𝑁  

(21) 

Applying Lemma 2, see (Grman et al. 2005), then 

[
−𝐸𝑗

𝑇𝑃𝐸𝑗 𝐴𝑗
𝑇𝐺

𝐺𝑇𝐴𝑗 −𝐺 − 𝐺𝑇 + 𝑃
] < 0, 𝑗 = 1,2, … ,𝑁 

(22) 

The admissibility condition can also be established from 

dual system, given that the admissibility of the pair (𝐸, 𝐴) 

is equivalent to the admissibility of (𝐸𝑇, 𝐴𝑇), from the fact 

that 𝑑𝑒𝑡(z𝐸 − 𝐴) = 𝑑𝑒𝑡(z𝐸𝑇 − 𝐴𝑇) and 

𝑑𝑒𝑔(𝑑𝑒𝑡(z𝐸 − 𝐴)) = 𝑑𝑒𝑔(𝑑𝑒𝑡(z𝐸𝑇 − 𝐴𝑇)), (see 

(Chadli, Darouach, 2012)), then 

Lemma 2.3.  Let the system (13). That system is admissible 

if and only if there exists a matrix 𝑃 = 𝑃𝑇 > 0 such that 

the following equivalent linear inequalities are satisfied. 

 

i) 

𝐸𝑗𝑃 𝐸𝑗
𝑇 ≥ 0,  𝐴𝑗𝑃𝐴𝑗

𝑇 − 𝐸𝑗𝑃 𝐸𝑗
𝑇 < 0, 𝑗 = 1,2, … ,𝑁 

(23) 
ii) 

[
−𝐸𝑗𝑃𝐸𝑗

𝑇 𝐴𝑗𝐺

𝐺𝑇𝐴𝑗
𝑇 −𝐺 − 𝐺𝑇 + 𝑃

] 0,  𝑗 = 1,2,… ,𝑁 

(24) 

 

   As it can be noticed in (23), the inequality   𝐸𝑗
𝑇𝑃 𝐸𝑗 ≥ 0 

is not strict which results in difficulty in computation. In 

order to remove such inequality and establish new strict 

matrix inequality conditions, in (Zhang et al., 2008) a new 

condition is proposed: 

Theorem 2.4 (Stability of open-loop: (G. Zhang, Xia, and 

Shi 2008)).  The system (13) is admissible if and only if there 

exists a positive definite matrix 𝑄 ∈ ℝ𝑛×𝑛 and a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟)
 such that 

 𝐴𝑗
𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)𝐴𝑗 − 𝐸𝑗

𝑇𝑄𝐸𝑗 < 0, 𝑗 = 1,2, … ,𝑁  

(25) 

 

with 𝐸𝑗 denotes a matrix with the properties of 𝑁(𝐸𝑗) =

𝑅(𝐸𝑗), i.e. 𝐸𝑗𝐸𝑗 = 0, and 𝐸𝑗  𝐸𝑗

𝑇
> 0.  

Proof  

See (Zhang, Xia, Shi, 2008). 

The matrix 𝐸 ∈ ℝ(𝑛−𝑟)×𝑛, which is of full column ranks, 

it is composed of base of ker 𝐸. 

 

Using the Schur complement, then: 

Lemma 2.5.  The system (13) is admissible if and only if there 

exists a positive definite matrix 𝑄 ∈ ℝ𝑛×𝑛, a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟)
 and a matrix 𝐺 ∈ ℝ𝑛×𝑛 such 

that for 𝑗 = 1,2, … , 𝑁  

 

[
−𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝐺

𝐺𝑇𝐴𝑗 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗

] < 0,       (26) 

 

Proof  

As it is known and since 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗  is positive definite, 

(25) can be can be described by (for all 𝑗 = 1,2, … ,𝑁) 
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[
−𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

𝑇

𝐴𝑗 −(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

] < 0,   (27) 

 

In order to recover Theorem 2.4 (necessity), for 𝐺 =

𝐺𝑇 = 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗, the inequality (27) holds. For the 

sufficiency, the inequality (26) is assumed feasible. Hence    

𝐺 + 𝐺𝑇 > 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗 > 0   for    all           𝑗 =

1,3,… ,𝑁. If 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗  is positive definite, ∀ 𝑗 =

1,3, … ,𝑁, then the inequality (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗 −

𝐺)
𝑇
(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

−1

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗 − 𝐺) ≥ 0 is 

satisfied. Therefore, the following condition can be 

established: 𝐺𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

−1

𝐺 ≥ 𝐺 + 𝐺𝑇 −

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗), which yields (∀ 𝑗 = 1,2,… , 𝑁) 

 

[
−𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝐺

𝐺𝑇𝐴𝑗 −𝐺𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

−1

𝐺
] < 0, 

 

Since 𝐺 is nonsingular, matrix inequality is multiplied by the 

right by the matrix 𝑇:= 𝑑𝑖𝑎𝑔[𝕀, 𝐺−1 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)] and by 

the left by 𝑇𝑇 from which the matrix inequality (27) is 

recovered.  

The condition for the equivalent dual system is given by 

(∀ 𝑗 = 1,2, … , 𝑁): 

 

[
−𝐸𝑗𝑄𝐸𝑗

𝑇 𝐴𝑗𝐺

𝐺𝑇𝐴𝑗
𝑇 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗𝑆𝐸𝑗

𝑇] < 0,       (28) 

 

 

to condition that 𝐸𝑗

𝑇
𝐸𝑗

𝑇 = 0 and 𝐸𝑗

𝑇
𝐸𝑗 > 0 for all 𝑗 =

1,2, … ,𝑁. 

A new extended and improved condition has been 

presented in (Mohammed Chadli and Darouach 2012), which 

is described in the following theorem: 

Theorem 2.6 (Stability of open-loop: (Mohammed Chadli 

and Darouach 2012)).  The system (13) is admissible if and 

only if the following equivalent statements hold. 

 

(i) There exists a matrix 𝑃 = 𝑃𝑇 satisfying the LMI (28). 

(ii) There exist matrices 𝑄 > 0 and 𝑆 = 𝑆𝑇 satisfying the 

LMI (25). 

(iii) There exist matrices 𝑄 > 0 and 𝑆 = 𝑆𝑇 satisfying the 

LMI  

𝐴𝑗 (𝑄 − 𝐸𝑗𝑆𝐸𝑗

𝑇
)𝐴𝑗

𝑇 − 𝐸𝑗𝑄𝐸𝑗
𝑇 < 0, 𝑗 = 1,2, … , 𝑁  

(29) 

with 𝐸𝑗

𝑇
𝐸𝑗

𝑇 = 0 and 𝐸𝑗

𝑇
𝐸𝑗 > 0. 

(iv) There exist matrices 𝑄 > 0, 𝑆 = 𝑆𝑇, 𝐹 and 𝐺 

satisfying, ∀ 𝑗 = 1,2, … , 𝑁, the following LMI 

 

[

−𝐸𝑗
𝑇𝑄𝐸𝑗 + 𝐴𝑗

𝑇𝐹𝑇 + 𝐹𝐴𝑗 −𝐹 + 𝐴𝑗
𝑇𝐺𝑇

−𝐹𝑇 + 𝐺𝐴𝑗 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗

] < 0 

(30) 

 

(v) There exist matrices 𝑄 > 0, 𝑆 = 𝑆𝑇, 𝐹 and 𝐺 

satisfying, ∀ 𝑗 = 1,2, … , 𝑁, the following LMI 

[

−𝐸𝑗𝑄𝐸𝑗
𝑇 + 𝐴𝑗𝐹

𝑇 + 𝐹𝐴𝑗
𝑇 −𝐹 + 𝐴𝑗𝐺

𝑇

−𝐹𝑇 + 𝐺𝐴𝑗
𝑇 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗𝑆𝐸𝑗

𝑇] < 0 

  (31) 

   

Proof  

See (Chadli, Darouach, 2012).  

 

 

2.1 Numerical Examples 

Consider the matrices, (Mohammed Chadli and 

Darouach 2012): 

𝐸 = [
1 2
0 0

] , 𝐴 = [
2.5 1
1.7 0.8

] ;  𝐸 = [0 1] 

 

Applying Theorem 2.4, the following matrices are 

obtained: 

 

𝑄 = [
0.1857 −0.1462

−0.1462 1.2582
] ,  𝑆 = 1.4142 

 

For next example, the following matrices are 

considered, (G. Zhang, Xia, and Shi 2008): 

 

𝐸 = [

1 0 0
0 1 0
0 0 0

] ,        𝐴 = [

0.2000 0.1000 0.1000
0.1000 0 0
0 0 0.1000

] ; 

 

𝐸 = [0 0 50] 
 

From Theorem 2.4: 
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𝑄 = 1.0𝑒 + 03 × [

1.0957 0.0106 −0.0005
0.0106 1.0749 −0.0002
−0.0005 −0.0002 1.0696

] ,

𝑆 = 43.65 

 

The conditions for admissibility that are characterized 

in terms of strict LMIs allow to design stabilizing controllers 

for descriptor LPV systems. 

 

2.2 Robust Stabilization by State Feedback Control 

In order to design appropriate controllers, it is necessary 

to evaluate the characterization of the controllability 

condition for DS. 

Definition 2.4.  A linear DS is said controllable if, for any 

time 𝑘 > 0, 𝑥0 ∈ ℝ𝑛 and 𝑥𝑓 ∈ ℝ𝑛, there exits a control 

𝑢 such that 𝑥𝑘 = 𝑥𝑓  

Lemma 2.7 (Controllability of Descriptor LPV System).  

Consider system (13), which is said controllable if and only 

if, for all 𝜌: 

𝑟𝑎𝑛𝑘 [𝑧𝐸(𝜌) − 𝐴(𝜌)  𝐵(𝜌)] = 𝑛, ∀𝑧 ∈ ℂ, 𝑧  𝑓𝑖𝑛𝑖𝑡𝑒  𝑎𝑛𝑑  

                            𝑟𝑎𝑛𝑘 [𝐸(𝜌)  𝐵(𝜌)] = 𝑛                       (32) 

 

Proof  

See (Sjöberg, 2005; Scholz, 2015).  

In (32), the first condition talks about the controllability 

of the finite dynamic modes. The second condition is related 

to the controllability of the impulsive modes. 

The Definition 2.3 and the Lemma 2.7 allow to establish 

conditions for the control of DS in the sense of its 

stabilization (Chaabane et al. 2011; Mohammed Chadli and 

Darouach 2012). Thus, it is necessary to consider the 

controllability condition referred to the stability or 

stabilization of the DS type LPV. 

Indeed, let be system (13), for all 𝜌: 

1) The triplet (𝐸(𝜌), 𝐴(𝜌), 𝐵(𝜌)) is said that the 

system has stabilizable finite dynamics and impulse 

controllable if a matrix 𝕂 exists such that the pair 

(𝐸(𝜌), 𝐴(𝜌) + 𝐵(𝜌)𝕂) is admissible. 

2) The triplet (𝐸(𝜌), 𝐴(𝜌), 𝐶(𝜌)) is said that the 

system is of finite dynamics detectable and impulse 

observable if a matrix 𝕃 exists such that the pair 

(𝐸(𝜌), 𝐴(𝜌) + 𝕃𝐶(𝜌)) is admissible. 

On the other hand, when the index of the system; or the 

maximum size of the Jordan blocks in the canonical form 

Weierstraß of the matrix pair (𝐸, 𝐴); is not greater than 1 

and the pair (𝐸, 𝐴) is regular, the algebraic part (or the 

associated redundant variables) can be eliminated in (13), 

resulting in a standard linear system of reduced order, (with 

a non-square matrix 𝔼, which has a generalized inverse). 

Conversely, systems with an index higher than 1 may lose 

the causality for some insufficiently smooth inputs. 

Let consider that system (13) is controllable for all 𝜌, 

thus, the robust admissibilization of system (13) is 

considered by means of a state feedback control. Then, 

consider the control 𝑢𝑘 given by 

𝑢𝑘 = 𝑲𝑥𝑘,                                                                (33)   

 

then, the system in cloed-loop is given by 

𝐸(𝜌)𝑥𝑘+1 = (𝐴(𝜌) + 𝐵(𝜌)𝑲)𝑥𝑘                             (34)   

 

From the Theorem 2.6 on the equivalent dual system, 

the following result is determined: 

Lemma 2.8.  The system (13) is robustly admissible via 

a state feedback controller (33), if and only if there exists a 

positive definite matrix 𝑄 ∈ ℝ𝑛×𝑛, a symmetric matrix 𝑆 ∈

ℝ(𝑛−𝑟)×(𝑛−𝑟)
 and a matrix 𝐺 ∈ ℝ𝑛×𝑛, a matrix 𝐹 ∈

ℝ𝑛×𝑛 and the matrices 𝑋 ∈ ℝ𝑞×𝑛, 𝑌 ∈ ℝ𝑞×𝑛, such that, 

∀ 𝑗 = 1,2, … ,𝑁:  

 

[
−𝐸𝑗𝑄𝐸𝑗

𝑇 + 𝐴𝑗𝐹
𝑇 + 𝐵𝑗𝑋 + 𝐹𝐴𝑗

𝑇 + 𝑋𝑇𝐵𝑗
𝑇

−𝐹𝑇 + 𝐺𝐴𝑗
𝑇 + 𝑌𝑇𝐵𝑗

𝑇

−𝐹 + 𝐴𝑗𝐺
𝑇 + 𝐵𝑗𝑌

−𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗𝑆𝐸𝑗

𝑇] < 0,

(35) 

 

where the feedback gain is given by  

𝑲 = 𝑌(𝐺𝑇)−1                                                                   (36) 

 
Proof 

Applying Lemma 2.5 with respect to the condition defined 

by (28), using the dynamic matrix of the closed-loop 𝐴𝑗 +

𝐵𝑗𝑲, then the change of variables 𝑌 = 𝑲𝐺𝑇 and 𝑋 = 𝑲𝐹𝑇 

must be used.    

 

2.2.1 Numerical Example 

1) For this example, the following matrices are 

considered: 

𝐸 = [

1 0 0
0 1 0
0 0 0

] ,        𝐴 = [

2 0.1 0.1
0.1 0 0
0 0 1

], 

 

𝐵 = [

0.1 0.1
0.1 0.2
0 0.2

] ;        𝐸
𝑇

= [
0 0 20

] 

 

  Applying the Lemma 2.8, the resulting matrices 

necessary to calculate the feedback gain are: 
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𝐺 = [

53.13 −3.523 −120.00
3.31 53.69 0.69
119.64 −0.71 −546.45

], 

 

𝑌 = 1.0𝑒 + 03 × [
−1.73 −0.18 −5.37
0.84 −0.09 2.60 ] 

 

  Thus, 

  𝑲 = [
−20.6497 −2.1042 5.3028
9.8561 −2.1983 −2.5945] 

 

  The dynamic matrix of closed-loop is 

 

  𝑨 = [

0.9206 −0.3302 0.3708
0.0062 −0.6501 0.0114
1.9712 −0.4397 0.4811

] 

 

  Thus, the finite eigenvalues of 𝜆𝐸 − 𝑨 are: 𝜆1 =
−0.6109, 𝜆2 = −0.6276 

 

2) For next example, let consider the descriptor LPV 

system: 

  [
2 + 𝜌1 1
0 0 ] 𝑥𝑘+1 = [

1 + 2𝜌2 1
2 −𝜌1] 𝑥𝑘 + [

−𝜌1

1 ] 𝑢𝑘 

   

  with 𝜌1 ∈ [−1  1] and 𝜌2 ∈ [−1  1]. 
  In order to apply the Lemma 2.8, the following 

matrices are considered: 

  𝐸1

𝑇
= 𝐸3

𝑇
= [

1 −1
],        𝐸2

𝑇
= 𝐸4

𝑇
[
1

3
−1

] 

 

  which are in correspondence to vertex matrices 𝐸𝑗 

for 𝑗 = 1,… ,4. Thus, for 𝐹 = 0 the results obtained 

are 

 

  𝑆 = 178.3975,    𝐺 = [
6.3429 27.8754
2.2215 −1.6985], 

𝑌 = [19.3438 −44.4202] 
 

  Therefore, the feedback gain is 

  𝑲 = [−16.5803 4.4667] 
 

  Therefore, for the pair (𝐸𝑗 , 𝑨𝑗), 𝐽 = 1,2, … , ,4, 

where 𝑨𝑗  is the dynamic matrix of closed-loop, the 

finite poles are: −0.8181, 0.1388, 0.2727, 0.6939, 

respectively. In order to evaluate the robust 

admissibility for the closed-loop system, Figure 1 

and 2  shows the distribution of the poles and its 

projection in the complex plane as results of the 

parametric variations. Easily it is possible to be 

concluded that the system in closed-loop is 

admissible robustly. 

   
  Fig. 1. The pole distribution. 

                Distribución de polos. 

 

 

3) Let be system with 

𝐸 = [

1 0 0
0 0 0
2 0 1

] ,    𝐵 = [

0
0
1

], 

 

𝐴0 = [

−.25 0.1𝜌 0.01𝜌
−0.5 0.5 − 0.01𝜌 2 − 0.01𝜌
0.75 −1 + 0.005𝜌 −1.5 + 0.005𝜌

], 

 

   
   Fig. 2. The pole projection in the complex plane. 

             Proyección de polos en el plano complejo. 

   

   with 𝜌1 ∈ [−1    1]. Considering 𝐸
𝑇

= [
0 1 0

], 

then 

(𝐺𝑇)−1 = 1.0𝑒 + 11 × [

−0.0815 0.0828 0.3264
−0.0000 0.0000 0.0000
0.2872 −0.2919 −1.1499

], 
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𝑌𝑓 = [−0.0000 0.1524 −0.0000],   
  𝑆 = 6.4399𝑒 + 08 

 

  Therefore, the feedback gain corresponding is 

  𝑲 = [−0.6002 0.2868 −1.3517] 
 

   
  Fig. 3. The closed-loop poles.  

             Polos del lazo cerrado. 

   

  For this particular case, the obtained finite stable 

poles are real. 

4) Let consider the following descriptor LPV system 

with: 

𝐸 =

(

 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)

 
 

    𝐴(=

(

 
 

0 1 0 𝜌1

0 0 1 1
0 0 0 1
1 0.75 0.25 𝜌2

)

 
 

, 

(37) 

 

𝐵 =

(

 
 

1 0
0 1
0.895 1
−1 1

)

 
 

 

 

 

  where: 𝜌1 ∈ [0    0.5];  𝜌2 ∈ [0.5    1.0]. 
 

   
  Fig. 4. The projection in the complex plane. 

          Proyección en el plano complejo. 

For 𝐸
𝑇

= [0 0 0 1], then the following 

matrices are obtained: 

 
      𝐺   = 1.0𝑒 + 07 ×

[
 
 
 
 
1.6794 −0.4578 0.3591 0.0000
−0.6469 0.7345 −0.3318 −0.0000
0.2381 −0.2044 0.6916 0.0000
−0.0017 0.0026 −0.0047 0.0000

]
 
 
 
 

, 

 

 

𝑌 = 1.0𝑒 + 06 × [
8.27 −0.72 −0.42 0.003
−5.99 1.07 −2.99 0.01 ], 

 

𝑆 = 8.1032𝑒 + 03 

 

Consequently, the feedback gain is 

 

𝑲 = 1.0𝑒 + 11 × [
0.0000 0.0000 −0.0000 −9.8756
−0.0000 −0.0000 −0.0000 −9.8756] 

 

 

For the closed-loop system, Figure 5 and 6  shows the 

magnitude of the poles with respect to the parametric 

variations, and also the location of the poles in the complex 

plane. 
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Fig. 5. The pole distribution for the system (37). 

          Distribución de polos para el sistema (37). 

 

 

2.3 Robust admissibilization with pole location 

In this section, the idea is to present an extension of the 

results in (Peaucelle et al. 2000; Krokavec and Filasová 

2019) to the case of descriptor LPV systems. Thus, the more 

generalized D-stable region is considered, defining the 

ellipse parameters in order to obtain the D-stability area. 

 
Fig. 6.  The pole projection for the system (37). 

          Proyección de polos para el sistema (37). 

 

In (Krokavec, Filasová, 2019) the Lypunov-Krasovskii 

theorem is used, then the closed-loop system pole clustering 

is tailored via a finite set of LMIs with expansion of the 

Lyapunov matrix inequality. Thus, let consider the stability 

of autonomous descriptor system given by 

𝐸𝑥𝑘+1 =
𝐴 − 𝜎𝕀

𝑟
𝑥𝑘 

where 𝜎,  𝑟 ∈ ℝ and 𝑦 ≤ 𝑏 < 𝑟, 𝜎 + 𝑟 < 1, being 

defined the analytic function of an ellipsoid in the 𝒁 − plane, 

(Krokavec and Filasová 2019): 

(𝑥 − 𝜎)2

𝑟2
+

𝑦2

𝑏2
< 1 

 

Let be the Lyapunov function 𝑉(𝑥𝑘) = 𝑥𝑘
𝑇𝐸𝑇𝑃𝐸𝑥𝑘 >

0, then from the Lyapunov-Krasovskii theorem 

 

𝑥𝑘+1
𝑇 𝐸𝑇𝑃𝐸𝑥𝑘+1 − 𝑥𝑘

𝑇𝐸𝑇𝑃𝐸𝑥𝑘 ≤ 
 

−
𝑦2

𝑟2
(
𝑟2

𝑏2
− 1)𝑥𝑘

𝑇𝐸𝑇𝑃𝐸𝑥𝑘 < 0, 

then 

(𝐴 − 𝜎𝕀)𝑇𝑃(𝐴 − 𝜎𝕀) − 𝑟2𝐸𝑇𝑃𝐸 + 

                   𝑦2 (
𝑟2

𝑏2 − 1)𝐸𝑇𝑃𝐸 < 0                      (39) 

               [−𝑟2 + 𝑦2 (
𝑟2

𝑏2 − 1)] 𝐸𝑇𝑃𝐸 

         −𝜎𝑃𝐴 − 𝜎𝐴𝑇𝑃 + 𝐴𝑇𝑃𝐴 + 𝜎2𝑃 < 0         (40) 
 

 

Lemma 2.9.  Consider system (38), then the matrix the pair 

(𝐸, 𝐴) is 𝑫 -stable if and only if for given positive scalars 

𝜎,  𝑟 ∈ ℝ and 𝑦 ≤ 𝑏 < 𝑟, 𝜎 + 𝑟 < 1 there exist 𝑄 ∈
ℝ𝑛×𝑛, 𝑄 = 𝑄𝑇 > 0, such that 

 

 

i) 

[
 
 
 (−𝑟2 + 𝑦2 (

𝑟2

𝑏2 − 1))𝐸𝑇𝑄𝐸 𝐴𝑇𝑄 − 𝜎𝑄

𝑄𝐴 − 𝜎𝑄 −𝑄
]
 
 
 

< 0   (41)      

 

ii) 

   

[
 
 
 (−𝑟2 + 𝑦2 (

𝑟2

𝑏2 − 1))𝐸𝑄𝐸𝑇 𝐴𝑄 − 𝜎𝑄

𝑄𝐴𝑇 − 𝜎𝑄 −𝑄
]
 
 
 

< 0   (42) 

 

Proof 

The Schur complement is applied for the inequality matrix 

(39). The item ii) is the dual of i).    

 

• It is possible be noted that for limit case (𝑦 = 𝑏), the the 

D -stability region is strictly given by the area inside the 

ellipse. 

• If 𝑟 = 𝑏, the stable poles are located in a particular 

region, D -circle stability area, which is shown in the 

Figure 7. There, 𝑟 is the radius and the center is defined 

by (𝜎, 0), with |𝜎| + 𝑟 ≤ 1 and |𝜎| < 1. 

• For the previous case, if 𝑟 = 1 and 𝜎 = 0, it is evident 

that D-stability region is the open unit disc of the complex 

𝒁 -plane. 
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Fig. 7. Location of stable poles in a  D -circle region. 

Ubicación de polos estables en una región D-circulo. 

 

This is derived by considering that the dynamic matrix 

corresponds to the matrix  
𝐴−𝜎𝕀𝑛

𝑟
. This condition is extended 

for descriptor LPV system as follows: 

Lemma 2.10.  The system (13)  is admissible with finite poles 

in a  D-stability region defined by the parameters 𝜎,  𝑟 ∈ ℝ 

and 𝑦 ≤ 𝑏 < 𝑟, 𝜎 + 𝑟 < 1, if and only if there exists a 

positive definite matrix 𝑄 ∈ ℝ𝑛×𝑛, a symmetric matrix 𝑆 ∈

ℝ(𝑛−𝑟)×(𝑛−𝑟)
 and a matrix 𝐺 ∈ ℝ𝑛×𝑛, with 𝐺 + 𝐺𝑇 >

0, satisfying, ∀𝑗 = 1,2, …𝑁, the following LMI of the 

equivalent statements: 

 

 

1) 

[
 
 
 
 (−𝑟2 + 𝑦2 (

𝑟2

𝑏2
− 1))𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝐺 − 𝜎𝐺

𝐺𝑇𝐴𝑗 − 𝜎𝐺𝑇 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗

]
 
 
 
 

< 0, 

(43) 

2) 

[
 
 
 
 
 (−𝑟2 + 𝑦2 (

𝑟2

𝑏2
− 1))𝐸𝑗𝑄𝐸𝑗

𝑇 𝐴𝑗𝐺 − 𝜎𝐺

𝐺𝑇𝐴𝑗
𝑇 − 𝜎𝐺𝑇 −𝐺 − 𝐺𝑇 + 𝑄 − 𝐸𝑗

𝑇

𝑆𝐸𝑗

𝑇

]
 
 
 
 
 

< 0, 

(44) 

 

Proof  

Simply, from Lemma 2.9 and (26), 𝐴𝑗 is replaced by 
𝐴𝑗−𝜎𝕀𝑛

𝑟
 

then, by means of algebraic manipulation, the matrix 

inequality (43) and (44)  are obtained.    

 

Remark 2.1.  From (40), the LMIs in the Lemma 2.9 are 

equivalents to 

i) 

         [
Γ 𝐴𝑇𝑄 + 𝜎𝑄

𝑄𝐴 + 𝜎𝑄 −𝑄 ] < 0                  (45) 

      with  Γ = (−𝑟2 + 𝑦2 (
𝑟2

𝑏2 − 1))𝐸𝑇𝑄𝐸 − 𝜎𝑄𝐴 − 𝜎𝐴𝑇𝑄. 

ii) 

  [
Υ 𝐴𝑄 + 𝜎𝑄

𝑄𝐴𝑇 + 𝜎𝑄 −𝑄 ] < 0                 (46) 

      with  Υ = (−𝑟2 + 𝑦2 (
𝑟2

𝑏2 − 1))𝐸𝑄𝐸𝑇 − 𝜎𝑄𝐴𝑇 − 𝜎𝐴𝑄. 

 

3 Bounded Real Lemma for Descriptor LVP System 

The Bounded Real Lemma (BRL) allows to establish a 

characterization of the ℋ∞-norm for dynamic systems as a 

LMI. Immediately a strict LMI condition under which 

descriptor LPV system is admissible with an ℋ∞-norm 

smaller than a prescribed positive number. Thus, the 

following results are obtained from (G. Zhang, Xia, and Shi 

2008) and (Mohammed Chadli and Darouach 2012). Let 

consider the descriptor LPV system type polytopic: 

𝐸(𝜌)𝑥𝑘+1 = 𝐴(𝜌)𝑥𝑘 + 𝐵𝜔(𝜌)𝜔𝑘 + 𝐵(𝜌)𝑢𝑘    (47) 

     𝑦𝑘 = 𝐶(𝜌)𝑥𝑘 + 𝐷(𝜌)𝜔𝑘 
 

where 𝜔𝑘 ∈ ℝ𝑑 are perturbation signals. The matrices 

𝐵𝜔(𝜌), 𝐷(𝜌) have appropriated dimensions. Then, the 

transfer function 𝐻𝜔𝑦(𝜌,z) = 𝐶(𝜌)(z𝐸(𝜌) −

𝐴(𝜌))
−1

𝐵𝜔(𝜌) + 𝐷(𝜌) is defined. 

Lemma 3.1.  The discrete-time descriptor LPV system (47) 

is admissible and satisfies ∥ 𝐻𝜔𝑦 ∥∞< 𝛾, if and only if 

there exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛 and a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟)
 satisfying, ∀𝑗 = 1,2, …𝑁, the 

following LMI  

 

[

−𝐸𝑗
𝑇𝑄𝐸𝑗 + 𝐴𝑗

𝑇(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)𝐴𝑗 + 𝐶𝑗

𝑇𝐶𝑗

𝐷𝑗
𝑇𝐶𝑗 + 𝐵𝜔𝑗

𝑇 (𝑄𝑇 − 𝐸𝑗𝑆𝐸𝑗

𝑇
)𝐴𝑗

𝐶𝑗
𝑇𝐷𝑗 + 𝐴𝑗

𝑇(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)𝐵𝜔𝑗

−𝛾2𝕀 + 𝐷𝑗
𝑇𝐷𝑗 + 𝐵𝜔𝑗

𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)𝐵𝜔𝑗

] < 0

 

(48) 

 

Proof 

See (Zhang et al., 2008; Chadli, Darouach, 2012).    

 

Theorem 3.2.  The discrete-time descriptor LPV system (47) 

is admissible and satisfies ∥ 𝐻𝜔𝑦 ∥∞< 𝛾, if and only if 

there exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛, a symmetric 
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matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟)
 and the matrices 𝔉, 𝔊 

satisfying, ∀𝑗 = 1,2, …𝑁, the following LMI of the 

equivalent statements: 

 

i) (48) is holds. 

ii)  

[

−𝔈𝑗
𝑇ℚ𝔈𝑗 + 𝔉𝔄𝑗 + 𝔄𝑗

𝑇𝔉𝑇 −𝔉 + 𝔄𝑗
𝑇𝔊𝑇

−𝔉𝑇 + 𝔊𝔄𝑗 ℚ − 𝔊 − 𝔊𝑇 − 𝔈𝑗

𝑇
𝕊𝔈𝑗

] < 0 

(49) 

iii)  

[

−𝔈𝑗ℚ𝔈𝑗
𝑇 + 𝔉𝔄𝑗

𝑇 + 𝔄𝑗𝔉
𝑇 −𝔉 + 𝔄𝑗𝔊

𝑇

−𝔉𝑇 + 𝔊𝔄𝑗
𝑇 ℚ − 𝔊 − 𝔊𝑇 − 𝔈𝑗𝕊𝔈𝑗

𝑇] < 0 

(50) 

 

with 

𝔄𝑗 = [

𝐴𝑗 𝐵𝜔𝑗

𝐶𝑗 𝐷𝑗 ] ,    ℚ = [

𝑄 0
0 𝕀𝑝], 

 

 𝔈𝑗 = [

𝐸𝑗 0

0 𝕀𝑝×𝑑] ,    𝕊 = [
𝑆 0
0 0 ] 

Proof 

See (G. Zhang, Xia, and Shi 2008; Mohammed Chadli and 

Darouach 2012).    

 

4 Main results: 𝓗𝟐 − 𝓗∞ -Control for Descriptor 

LVP System 

First, let us look again at the strict LMI characterization 

of the ℋ2-norm for descriptor LVP systems. A first strict 

LMI condition for ℋ2 control of LTI descriptor systems is 

presented in (Ikeda, LEE, and Uezat 2000). This condition is 

based on Theorem 2.4. 

Let consider (47). Then, ∥ 𝐻𝜔𝑦 ∥2
2=  𝑡𝑟 [𝐷𝑇(𝜌)𝐷(𝜌) +

𝐵𝜔
𝑇(𝜌)𝑄𝐵𝜔(𝜌)], such that 𝑄 = 𝑄𝑇 > 0 and  𝐴𝑇(𝜌)𝑄𝐴(𝜌) −

𝐸𝑇(𝜌)𝑄𝐸(𝜌) + 𝐶𝑇(𝜌)𝐶(𝜌) < 0. 

Theorem 4.1.  The discrete-time descriptor LPV system (47) 

is admissible and satisfies ∥ 𝐻𝜔𝑦 ∥2
2< 𝜇, if and only if there 

exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛, a symmetric matrix 𝑆 ∈
ℝ(𝑛−𝑟)×(𝑛−𝑟) and the matrices 𝑊 ∈ ℝ𝑑×𝑑 with  tr(𝑊)< 𝜇, 𝐺 

satisfying, ∀𝑗 = 1,2, …𝑁, the following LMI of the equivalent 

statements: 

i) 

[
 
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝑄 𝐶𝑗

𝑇

𝑄𝐴𝑗 𝑄 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0, [

𝑊 𝐵𝜔𝑗
𝑇 𝑄 𝐷𝑗

𝑇

𝑄𝐵𝜔𝑗 𝑄 0

𝐷𝑗 0 𝕀

] > 0  

(51) 

ii) 

[
 
 
 
 
𝐸𝑗𝑄𝐸𝑗

𝑇 𝐴𝑗𝑄 𝐵𝜔𝑗

𝑄𝐴𝑗
𝑇 𝑄 0

𝐵𝜔𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0,        [

𝑊 𝐶𝑗𝑄 𝐷𝑗

𝑄𝐶𝑗
𝑇 𝑄 0

𝐷𝑗
𝑇 0 𝕀

] > 0 

(52) 

 

iii) 

[
 
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝐺 𝐶𝑗

𝑇

𝐺𝑇𝐴𝑗 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗

𝑇
𝑆𝐸𝑗 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0 

          

[
 
 
 
 
𝑊 𝐵𝜔𝑗

𝑇 𝐺 𝐷𝑇

𝐺𝑇𝐵𝜔𝑗 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗

𝑇
𝑆𝐸𝑗 0

𝐷𝑗 0 𝕀
]
 
 
 
 

> 0   (53) 

iv) 

[
 
 
 
 
𝐸𝑗𝑄𝐸𝑗

𝑇 𝐴𝑗𝐺 𝐵𝜔𝑗

𝐺𝑇𝐴𝑗
𝑇 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
0

𝐵𝜔𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0 

             

[
 
 
 
 
𝑊 𝐶𝑗𝐺 𝐷

𝐺𝑇𝐶𝑗
𝑇 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
0

𝐷𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0  (54) 

Proof 

Since ii) is the dual one of i), then its equivalence is evident. 

Equivalence between iii) and i) is as it follows: consider the 

matrix = 𝑅𝑇 = (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) > 0, with 𝐸𝑗𝐸𝑗 = 0  and 

𝐸𝑗  𝐸𝑗

𝑇
> 0, such that ∥ 𝐻𝜔𝑦 ∥2

2=  𝑡𝑟 [𝐷𝑇(𝜌)𝐷(𝜌) +

𝐵𝑇(𝜌)𝑅𝐵(𝜌)], and 𝐴𝑇(𝜌)𝑅𝐴(𝜌) − 𝐸𝑇(𝜌)𝑅𝐸(𝜌) +
𝐶𝑇(𝜌)𝐶(𝜌) < 0. Thus, iii) must be equivalent to 

[
 
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝑅 𝐶𝑗

𝑇

𝑅𝐴𝑗 𝑅 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0,

[
 
 
 
 
𝑊 𝐵𝜔𝑗

𝑇 𝑅 𝐷𝑗
𝑇

𝑅𝐵𝜔𝑗 𝑅 0

𝐷𝑗 0 𝕀
]
 
 
 
 

> 0       

(55) 

which is equivalent to 

[
 
 
 
 𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) 𝐶𝑗

𝑇

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

𝑇𝐴𝑗 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0, 
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[
 
 
 
 𝑊 𝐵𝜔𝑗

𝑇 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) 𝐷𝑗

𝑇

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗)

𝑇𝐵𝜔𝑗 (𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) 0

𝐷𝑗 0 𝕀
]
 
 
 
 

> 0 

 

From (53), for 𝐺 = 𝐺𝑇 = 𝑅, the inequality (55) holds. For 

the sufficiency, the inequality (53) is assumed feasible. Thus, 

let 𝐺 + 𝐺𝑇 > 𝑅, then (𝐺 − 𝑅)𝑇𝑅−1(𝐺 − 𝑅) ≥ 0; therefore 

𝐺𝑇𝑅−1𝐺 ≥ 𝐺 + 𝐺𝑇 − 𝑅. Consequently, 

[
 
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝐺 𝐶𝑗

𝑇

𝐺𝑇𝐴𝑗 𝐺𝑇𝑅−1𝐺 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0 

[
 
 
 
 
𝑊 𝐵𝜔𝑗

𝑇 𝐺 𝐷𝑗
𝑇

𝐺𝑇𝐵𝜔𝑗 𝐺𝑇𝑅−1𝐺 0

𝐷𝑗 0 𝕀
]
 
 
 
 

> 0                                 (56)  

 

Let consider a matrix T = 𝑑𝑖𝑎𝑔[𝕀, 𝐺−1𝑅, 𝕀], then the 

inequalities in (56) are multiplied by the right by T and the 

left by T𝑇; so that (55) is obtained, where 𝑅 can be replaced 

by 𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗. Finally, iv) is the dual equivalent of iii).    

Lemma 4.2.  The discrete-time descriptor LPV system  (47) 

is admissible and satisfies ∥ 𝐻𝜔𝑦 ∥2
2< 𝜇, if and only if: 

i) there exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛, a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟) and the matrices 𝑊 ∈ ℝ𝑑×𝑑with  

tr(𝑊)< 𝜇, and 𝐺 satisfying, ∀𝑗 = 1,2, …𝑁, the following 

LMI 

[
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 𝐴𝑗
𝑇𝑄 𝐶𝑗

𝑇

𝑄𝐴𝑗 𝑄 0

𝐶𝑗 0 𝕀
]
 
 
 

> 0, [

𝑊 𝐵𝜔𝑗
𝑇 𝑄 𝐷𝑗

𝑇

𝑄𝐵𝜔𝑗 𝑄 0

𝐷𝑗 0 𝕀

] > 0 

(57) 

 

ii) there exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛, a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟) and the matrices 𝑊 ∈ ℝ𝑑×𝑑 

with tr(𝑊)< 𝜇, 𝐺 and 𝐹 satisfying, ∀𝑗 = 1,2, …𝑁, the 

following LMI 

         

[
 
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 − 𝐹𝐴𝑗 − 𝐴𝑗
𝑇𝐹𝑇 −𝐹 + 𝐴𝑗

𝑇𝐺 𝐶𝑗
𝑇

−𝐹𝑇 + 𝐺𝑇𝐴𝑗 Ξ 0

𝐶𝑗 0 𝕀
]
 
 
 
 

> 0    (58) 

                              

[
 
 
 
 
𝑊 𝐵𝜔𝑗

𝑇 𝐺 𝐷𝑇

𝐺𝑇𝐵𝜔𝑗 Ξ 0

𝐷𝑗 0 𝕀
]
 
 
 
 

> 0    (59) 

   

  with    Ξ = 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗

𝑇
𝑆𝐸𝑗       . 

iii) there exists a positive definite 𝑄 ∈ ℝ𝑛×𝑛, a symmetric 

matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟) and the matrices 𝑊 ∈ ℝ𝑝×𝑝 

with tr (𝑊) < 𝜇, 𝐺 and 𝐹 satisfying, ∀𝑗 = 1,2, …𝑁, the 

following LMI 

        

[
 
 
 
 
𝐸𝑗𝑄𝐸𝑗

𝑇 − 𝐹𝐴𝑗
𝑇 − 𝐴𝑗𝐹

𝑇 −𝐹 + 𝐴𝑗𝐺 𝐵𝜔𝑗

−𝐹𝑇 + 𝐺𝑇𝐴𝑗
𝑇 Φ 0

𝐵𝜔𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0    (60) 

                                                

[
 
 
 
 
𝑊 𝐶𝑗𝐺 𝐷

𝐺𝑇𝐶𝑗
𝑇 Φ 0

𝐷𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0    (61) 

   

    Where Φ = 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
. 

Proof 

The proof is based on establishing equivalence between the 

LMI (53) and its corresponding in (51), (Zhang et al., 2008;  

Chadli, Darouach, 2012). Thus, consider the matrix = 𝑅𝑇 =

(𝑄 − 𝐸𝑗

𝑇
𝑆𝐸𝑗) > 0, with 𝐸𝑗𝐸𝑗 = 0  and 𝐸𝑗  𝐸𝑗

𝑇
> 0, such that 

∥ 𝐻𝜔𝑦 ∥2
2=  𝑡𝑟 [𝐷𝑇(𝜌)𝐷(𝜌) + 𝐵𝑇(𝜌)𝑅𝐵(𝜌)], and 

𝐸𝑇(𝜌)𝑅𝐸(𝜌) − 𝐴𝑇(𝜌)𝑅𝐴(𝜌) − 𝐶𝑇(𝜌)𝐶(𝜌) > 0. 

• Sufficiency: Assuming that the condition (53) is 

satisfied, then multiplying by the left by [𝕀  − 𝐴𝑗
𝑇  𝐶𝑗

𝑇]  

and the right by [𝕀  − 𝐴𝑗
𝑇  𝐶𝑗

𝑇]
𝑇
, the following inequality 

is obtained: 

       𝐸𝑗
𝑇𝑄𝐸𝑗 − 𝐴𝑗

𝑇𝑅𝐴𝑗 − 𝐶𝑗
𝑇𝐶𝑗 > 0,                                   (62) 

 

which represents the corresponding LMI extended 

characterization of (51), that is exactly the necessary and 

sufficient condition for descriptor LPV system (47) to be 

admissible with a sub-optimal performance in ℋ2. 

• Necessity: Assuming that the condition (62) is satisfied, 

then there exist a matrix 𝐺 such that 𝐺 + 𝐺𝑇 − 𝑅 > 0, 

therefore 

[
𝐸𝑗

𝑇𝑄𝐸𝑗 − 𝐴𝑗
𝑇𝑅𝐴𝑗 − 𝐶𝑗

𝑇𝐶𝑗 0

0 𝐺 + 𝐺𝑇 − 𝑅
] > 0,       (63) 

which is equivalent to 

[
 
 
 
𝐸𝑗

𝑇𝑄𝐸𝑗 − 𝐴𝑗
𝑇𝑅𝐴𝑗 0 𝐶𝑗

𝑇

0 𝐺 + 𝐺𝑇 − 𝑅 0
𝐶𝑗 0 𝕀

]
 
 
 

> 0.            (64) 

        In effect,  (63) is obtained pre-multiplying (64) by  𝔗 =

[
𝕀 0 −𝐶𝑗

𝑇

0 𝕀 0 ]and post-multiplying it by 𝔗𝑇. 

Consequently, in order to obtain (53), the LMI  (64) is 

multiplied by the right by 𝔘 = [

𝕀 0 0
𝐴𝑗 𝕀 0

0 0 𝕀
] and by the left 

by 𝔘𝑇. Thus, by choosing = 𝐴𝑗
𝑇𝑅 − 𝐴𝑗

𝑇𝐺𝑇 , the condition (53) 

is obtained. Finally, iii) is the dual equivalent of ii). 
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Remark 2.  A similar procedure is applied for the 

characterization of the   ℋ∞-norm, according to the BRL (see 

Section 3), as a strict LMI. 

 
4.1 ℋ2-Control for Descriptor LVP System 

From of the LMI characterization of the ℋ2-norm, we 

are interesting in to design a control law by state feedback in 

order that the closed-loop system be robustly admissible. 

Lemma 4.3.  The discrete-time descriptor LPV system (47) 

is admissible and satisfies∥ 𝐻𝜔𝑦 ∥2
2< 𝜇 via a state feedback 

controller (33), if and only if: there exists a positive definite 

𝑄 = 𝑄𝑇 ∈ ℝ𝑛×𝑛, a symmetric matrix 𝑆 ∈ ℝ(𝑛−𝑟)×(𝑛−𝑟)
 

and the matrices 𝑊 ∈ ℝ𝑝×𝑝 with tr (𝑊) < 𝜇, 𝐺 and 𝑌 

satisfying, ∀𝑗 = 1,2, …𝑁, the following LMI  

[
 
 
 
 
𝐸𝑗𝑄𝐸𝑗

𝑇 𝐴𝑗𝐺 + 𝐵𝑗𝑌 𝐵𝜔𝑗

𝐺𝑇𝐴𝑗
𝑇 + 𝑌𝑇𝐵𝑗

𝑇 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
0

𝐵𝜔𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0       (65) 

                 

[
 
 
 
 
𝑊 𝐶𝑗𝐺 𝐷

𝐺𝑇𝐶𝑗
𝑇 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
0

𝐷𝑗
𝑇 0 𝕀

]
 
 
 
 

> 0      (66) 

 

where the feedback gain is given by  
𝑲 = 𝑌𝐺−1                                                                        (67) 

 

Proof 

Applying item iv) of Theorem 4.1, using the dynamic matrix 

of the closed-loop 𝐴𝑗 + 𝐵𝑗𝑲, then the change of variable 𝑌 =

𝑲𝐺 must be used.    

Remark 4.2.  When the robust admissibilization is 

considered with finite poles in a 𝐷-stability region of the 

complex 𝑍-plane (see Section 2.3), which is defined by the 

parameters 𝜎, 𝑟 ∈ ℝ and 𝑦 ≤ 𝑏 < 𝑟, 𝜎 + 𝑟 < 1, then the 

dynamic matrix corresponds to the matrix 
𝐴+𝐵𝐾−𝜎𝕀𝑛

𝑟
, 

consequently the LMI (65) is transformed to 

[
 
 
 
 
 (𝑟2 − 𝑦2 (

𝑟2

𝑏2 − 1))𝐸𝑗𝑄𝐸𝑗
𝑇 Λ 𝑟𝐵𝜔𝑗

Λ𝑇 Φ 0
𝑟𝐵𝜔𝑗

𝑇 0 𝕀

]
 
 
 
 
 

> 0                (68) 

with Φ = 𝐺 + 𝐺𝑇 − 𝑄 + 𝐸𝑗𝑆𝐸𝑗

𝑇
 and Λ = 𝐴𝑗𝐺 + 𝐵𝑗𝑌 − 𝜎𝐺. 

 

4.2 Example 

Let consider the descriptor polytopic system 

𝐸 = [

1 0 0
0 0 0
2 0 1

] ,    𝐵 = [

0
0
1

],    𝐵𝜔 = [

0 0
0.1 0
0.2 0.1

] 

 

    𝐴 = [

−.25 0.1𝜌 0.01𝜌
−0.5 0.5 − 0.01𝜌 2 − 0.01𝜌
0.75 −1 + 0.005𝜌 −1.5 + 0.005𝜌

], 

𝐶 = [
2 0 2

],    𝐷𝜔 = [
0.01 −0.5

] 

 

The matrix A is assumed to be uncertain with 𝜌 ∈ [−1,1]. 

Considering 𝐸
𝑇

= [
0 1 0

]  and 𝜇 = 1, then 

𝐺 = 1.0𝑒 + 04 × [

0.0665 −0.1966 0.0196
−0.0215 2.6149 −0.0070
0.0221 −0.7053 0.0072

] 

𝑌 = 1.0𝑒 + 04 × [−0.0759 1.8041 −0.0221], 
𝑆 = 7.9698𝑒 + 08 

 

Therefore, the feedback gain is 

𝑲 = [−1.3242 0.9999 1.5183] 
 

In order to evaluate the robust admissibility, Figure 8  

and 9 shows the closed-loop pole distribution with respect to 

the parametric variation and its projection in the complex 

plane. There is evident that the closed loop system is robustly 

admissible. Analogous, Figure 10 shows the variation of the 

ℋ2-norm for the closed-loop system with respect to 𝜌, which 

allows to conclude that ∥ 𝐻𝜔𝑦 ∥2
2< 𝜇 is satisfied. 

 
 Fig. 8. The pole distribution of the closed-loop system. 

        Distribución de polos del Sistema en lazo cerrado. 
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 Fig. 9. The pole projection for the closed-loop system. 

          Proyección de polos del Sistema en lazo cerrado. 

 
Fig. 10.  ℋ2-norm for closed-loop system 𝐻𝜔𝑦(𝑧). 

Norma-ℋ2 para el sistema en lazo cerrado 𝐻𝜔𝑦(𝑧). 

 

5 Conclusions 

A method for the robust admisibilization of discrete-

time LPV-type descriptor systems has been presented. The 

technique is based on the synthesis of robust controllers from 

satisfying performance index in ℋ2-ℋ∞. In order to avoid 

computational difficulties, an extended characterization of 

the ℋ2–ℋ∞norms has been presented, which allows 

obtaining strict and less conservative linear matrix 

inequalities. Thus, the necessary and sufficient admissibility 

conditions in strict linear matrix inequality have also been 

derived. The results obtained can be extended to robust 

admissibility by considering the location of poles in LMI 

regions. 
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