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Resumen 

 

El propósito de esta investigación fue seleccionar 25 indicadores bioclimáticos, urbanos, geográficos, socioeconómicos y 

sociopoliticos para identificar condiciones socio ambientales- climáticas, indicadores discriminantes y aspectos de 

sostenibilidad, resiliencia y habitabilidad de 70 metrópolis Latinoamericanas (periodo 2014-2018). Para organizar la 

información se propusieron datos de metrópolis e indicadores según tres variables dependientes (VD): VD-Zona climática 

Köppen Geiger, VD-Estratificación poblacional y VD-Localización geográfica. Cada VD se dividió en dos grupos, el 

primero en función de la altitud promedio de las metrópolis (sin prefijo altitudinal) y el segundo grupo reclasificando la 

altitud en 3 niveles (1 para cotas bajas, 3 para cotas medias y 5 para cotas altas). Posteriormente, se aplicaron dos 

modelos discriminantes, el primero de Conglomerados (MC), para graficar los clústeres (herramienta heatmap) y el 

segundo modelo de tipo Discriminante (MD) para validar errores por mala clasificación de los clústeres. La aplicación del 

MD corroboró que la VD-Localización geográfica (sin prefijo) obtuvo el menor error (4.7%) y el indicador discriminante 

de tipo urbano (Isla de calor) explicó el 61% de los datos, y en el segundo caso la VD-Zona climàtica (error de 8,5%) 

identificó los indicadores discriminantes socioeconómicos: índice de desarrollo humano (HDI), huella de carbono per 

cápita (Cf) y el índice de pobreza multidimensional (MPI) que explican el 100 % de los datos de un minoritario grupo (6%) 

de climas desérticos, tropicales y subtropicales. La validación estadística permitió reconocer indicadores influyentes y 

establecer las características socio ambientales-climáticas metropolitanas regionales, a su vez estas caracterizaciones 

permitieron verificar el desempeño de las metrópolis en función a la sustentabilidad, resiliencia y habitabilidad propuestos 

por organizaciones internacionales. Se concluye que para aplicar políticas climáticas realistas en Latinoamérica, se deben 

establecer primero las caracterizaciones metropolitanas de acuerdo a los indicadores aportados por el estudio, los cuales 

son coincidentes con las prioridades de los expertos internacionales. 

 

Palabras clave: Metrópolis regionales, Latinoamérica y el Caribe, Variables dependientes, Modelos multivariantes, 

Indicadores discriminantes, Políticas climáticas. 

 

Abstract 

The purpose of this research was to select 25 bioclimatic, urban, geographic, socioeconomic and socio-political indicators 

to identify socio-environmental-climatic conditions, discriminant indicators and aspects of sustainability, resilience and 

habitability of 70 Latin American metropolises (period 2014-2018). To organize the information, metropolis data and 

indicators were proposed according to three dependent variables (DV): DV-Köppen Geiger climate zone, DV-population 

stratification and DV-geographical location. Each DV was divided into two groups, the first according to the average 
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altitude of the metropolises (without altitudinal prefix) and the second group reclassifying altitude into 3 levels (1 for low 

altitudes, 3 for medium altitudes and 5 for high altitudes). Subsequently, two discriminant models were applied, the first 

Clustering Model (CM), to plot the clusters (heatmap tool), and the second Discriminant Model (DM) to validate errors due 

to misclassification of the clusters. The application of the DM corroborated that the DV-Geographic location (without 

prefix) obtained the lowest error (4.7%) and the urban-type discriminant indicator (Heat Island) explained 61% of the data, 

and in the second case the DV-Climate Zone (8.5% error) identified the socio-economic discriminant indicators: human 

development index (HDI), carbon footprint per capita (Cf) and the multidimensional poverty index (MPI) explaining 100% 

of the data for a minority group (6%) of desert, tropical and subtropical climates. Statistical validation made it possible to 

recognize influential indicators and to establish regional metropolitan socio-environmental-climatic characteristics, while 

these characterizations made it possible to verify the performance of metropolises in terms of sustainability, resilience and 

habitability as proposed by international organisations. It is concluded that in order to apply realistic climate policies in 

Latin America, metropolitan characterizations must first be established according to the indicators provided by the study, 

which coincide with the priorities of international experts. 

Keywords: Regional metropolises; Latin America and the Caribbean; Dependent variables; Multivariate models; 

Discriminant indicators - Climate policies. 

 

1 Introduction 

The world population reached 8 billion people in 2022, 

of which more than half (55%) live in urban areas, however 

this growth will continue on an upward trend towards 2050 

(70% of the population) in urban areas according to the 

Sustainable Development Goals Report proposed by the 

United Nations (2023). This trend is much more marked in 

Latin America and the Caribbean (LAC), according to data 

from the United Nations Habitat Organization (UN-

HABITAT, 2016), which shows an urban population of 

eighty percent (80%) of the region's total population and 

only thirteen percent (13%) of the global urban population. 

These heterogeneous population conditions added to the 

climatic and geographic variability of the region's 

metropolitan areas affect the social and economic 

vulnerability of more than 50% of the regional population, 

which already resides in areas with extreme climate risks 

according to the Development Bank of Latin America 

(CAF,2014) and has a significant deficit of physical 

infrastructure. 

According to international scientific consensus, this 

role and impact of metropolises on climate is undeniable 

according to Intergovernmental Panel on Climate Change  

(IPCC, 2021). The impact of these climate dynamics can be 

assessed according to various indicators based on the 

population, climate, geographic, and urban characteristics of 

metropolises. Historically, in recent decades, many reports 

have analyzed the differences in urban temperatures 

between rural and urban environments and their 

surroundings, known as Urban Heat Islands. These studies 

have been the forerunners in the climate assessment of 

clusters of regional metropolises (Casadei et al., 2021). 

Another indicator that reflects the relevant role in the 

climate of the social and environmental dynamics of 

metropolises is urbanization and its progressive expansion, 

which is a factor that generates an environmental impact 

through changes in land use and carbon release (Grimm et 

al., 2008). Under this approach, regional studies relating 

urbanization, urban land expansion and temperature can be 

identified in 43 cities of  Chile (Henríquez et al., 2017) and 

megacities such as Sao Paulo (Pacifici et al., 2019). 

Recent approaches to climate studies, in turn, include 

socio-economic and socio-political indicators, which allow 

capturing the structure and nature of city growth. It is 

necessary to identify these anthropogenic socio-economic 

indicators such as carbon dioxide (CO2) emissions and 

pollution (PM2.5, PM10) as climate-influencing aspects 

(Creutzig et al.,2015) the Gross Domestic Product (GDP) of 

each country and energy consumption. Aware of this 

situation, regional researchers have estimated per capita 

carbon footprint (Morán et al., 2018) and particulate matter 

measurements in several South American metropolises and 

megacities in Brazil according to Andrade et al. (2012). 

These anthropogenic factors have a high environmental 

impact, as do the socio-economic indicators that measure 

the influence of the population in metropolises, such as the 

Human Development Index (HDI), the income of these 

populations (GDP), and the GINI, which evaluates data on 

the social evolution of a population (Lipset, 2007). 

As the impact of climate change at the regional level 

and specifically in large metropolises is a scientific concern 

concerning the development of cities, socio-political 

indicators have been proposed within urban planning, 

including climate governance and adaptation-mitigation 

strategies. Specifically, let's talk about governance and its 

influence on climate policy development. We only let's talk 

about governance and its influence on climate policy 

development. We proceed to analyze current democratic 

trends, which indicate that 55% of the world's population 

lives in authoritarian and hybrid regimes. Only 12% are 

optimal democracies according to the Economist 

Intelligence Unit Democracy Index (EIU, 2018). Although 

there are shortcomings in the estimation of these socio-

political indicators in the LAC region, it is recognized that 

efforts have been made to report sustainability studies in 

100 cities in Mexico (Estrada et al., 2020) and broader 
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studies geographically referring to ecosystem services, 

habitat, democracy, and human development in 21 

metropolises in the region (Dobbs et al., 2014). 

However, it is worth mentioning that when reviewing 

other types of socio-political indicators, not included in 

these studies, some assess climate risk, which is particularly 

high in the Latin American region according the Global 

Climate Risk Index (GERMANWATCH, 2021), which 

involve assessing the rule of law of the population, which in 

the case of LAC is deficient according to Global Justice 

Project (WJP) and those that structure social gaps 

(multidimensional poverty), which is particularly marked in 

the region, according to the Oxford Poverty and Human 

Development Initiative (OPHI, 2023). 

The current state of the art indicates that, although 

socio-environmental and climate studies on the region's 

metropolises can be found in the literature, there are no 

proposals that integrate this type of situation using various 

indicators weighted according to the different groups of 

metropolises. Therefore, this study aims to establish and 

validate with multivariate models (Clusters and 

discriminant) organisations of different clusters of ‘Köppen 

Geiger climate-indicators’ according to dependent variables 

such as population, climate or geographical location and to 

obtain the most discriminant indicators within the data sets. 

These differences between the climate groups 

(Clusters) according to the dependent variables will be 

visualized in a thematic cartography elaborated in a 

Geographic Information System (GIS). Subsequently, after 

recognizing the socio-environmental and climatic 

characteristics of the clusters and their discriminating 

indicators, reports on climate policies aimed at 

sustainability, resilience and liveability proposed by 

international organizations such as the 100 Resilient Cities 

project will be evaluated: 100 Resilient Cities project 

(100RC, 2013), cited by Hofmann (2021), Sustainable cities 

index (ARCADIS , 2015) on the 100 most sustainable cities 

in the world, Resilient Cities Index  proposed by Economist 

Impact (2023) and the Global Liveability Index proposed by 

the Economist Intelligence Unit (EIU, 2024) which includes 

173 global metropolises. This research on indicators that 

support international climate policies will enable the 

performance of regional metropolises in terms of 

sustainability, resilience and liveability to be assessed. 

 

2. Methodology 

 

The Latin America and Caribbean (LAC) region 

comprises 33 states, located in three sub-regions: South 

America, Mesoamerica, and the Caribbean (Figure 1). This 

geographic region represents a relatively large and highly 

vulnerable area to extreme weather events according to 

reports made by the Development Bank of Latin America 

(CAF, 2014), which also reported that at the regional level 

48% of the capitals present a situation of high risk to 

climate change scenarios. 

In addition to this risk condition, the Latin American 

region is characterized by significant climate variability 

according to the Köppen-Geiger classification, which has 

served as a reference in regional climate studies (Wu et al., 

2019). These updated Köppen-Geiger climates in the region 

(Beck et al., 2018), are made up of the following climatic 

zones: steppes (warm and cold), arid (warm and cold), 

subtropical, tropical and temperate (Table 1). About 

population aspects, it should be noted that there is an 

important stratification of the regional population according 

to the number of inhabitants (UN-Habitat, 2016), which 

leads to an important urban dynamic, therefore, based on 

these climatic, population and geographic criteria, the study 

proposed to include seventy (70) metropolises which 

represent an important percentage sample (44%) within the 

regional urban population estimated at 625.806.000 

inhabitants, according to the Economic Commission for 

Latin America and the Caribbean (CEPAL, 2017).  

 
Fig.1. Location of metropolises. Some illustrative examples of the 

metropolises in LAC: (a) Rio de Janeiro ; (b) Santo Domingo , (c) Cali ; 
(d) Panama City ; (e) Maracaibo ; (f) Tijuana ; (g) Lima ; (h) Arequipa ; i) 

Rosario ; j) Buenos Aires ; k) Quito ; l) Gran Valparaíso ; m) Santiago de 
Chile , n) Guadalajara ; o) Guatemala City ; p) La Paz . 
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Table 1. Metropolis according to their location Köppen-Geiger 

 

Climate Köppe

n-

Geiger  

Sub-group                        Metropolises 
 

  

Af 

 

 

Ecuatorial 

 

Salvador, Manaos, Belem,  

Rio de janeiro, Santos 

Tropical Am 

 

Monsoon Joao Pessoa, Managua, 

Santo Domingo, San Juan, 

Sao Luis, Recife, San Pedro 

Sula 

   Bucaramanga, Cali, 

Medellin 

 

 

 

As 

(Aw) 

 

Tropical 

savanah 

Caracas, Ciudad de 

Panamá, Fortaleza, La 

Habana, Natal, Brasilia, 

Santa-Cruz, Barranquilla, 

Guayaquil, Mérida, 

Goiania, Maracay, San 

Salvador, Tegucigalpa, 

Valencia, Vitoria.  

Sub 

tropical 

Cwa 

 

Subtropical 

with dry 

winters 

Belo horizonte, Campinas, 

Córdoba, Guadalajara,  

San Miguel de Tucumán, 

Cuernavaca, San José. 

 Cfa 

 

Humid 

subtropical 

Asunción, Puerto Alegre, 

Rosario, Sao Paulo. 

Arid  Bsh 

 

 

Bsk 

Steppes 

(hot) 

 

Steppes 

(cold) 

 

Maracaibo, Monterrey, 

León, Querétaro,Cartagena, 

Cochabamba, Tijuana, 

 San Luis Potosí. 

 

Desert Bwh 

 

Desertic 

(hot) 

Lima, Torreon, Mexicali  

 Bwk 

 

Desertic 

(cold) 

Ciudad Juarez, Mendoza, 

Arequipa 

Temperate Csb 

 

Mediterrane

am with 

fresh 

summers 

Concepción, Valparaíso   

 

 Csc 

 

Cold-

summer 

Mediterrane

an 

Santiago de Chile. 

 Cwc Cold 

subtropical 

highland 

La Paz 

 Cfb 

 

West coast 

maritime 

(oceanic) 

Buenos Aires, Curitiba, 

Montevideo, Bogotá, Quito,  

 Cwb 

 

Temperate 

with dry 

winters 

Toluca, C.D México, 

Morelia, Puebla, C.D 

Guatemala  

 

2.1 Period of analysis and selection of indicators 

Five-year period (2014 to 2018) was selected for the 

analyses, for which it was possible to use and generate 

robust data on metropolitan climates and their urban, 

climatic, socio-economic and socio-political conditions. The 

information is widely reported in international articles and 

publications on climate and population inhuman settlements 

of the Intergovernmental Panel on Climate Change (IPCC, 

2021). The temporal sequence underpinning the choice of 

the period was based on the following criteria: 1) during the 

years 2014-2018, there was a significant contribution of 

publications related to climate and urban dynamics of 

human settlements at the regional level, 2) from 2014 

onwards, the annual reports are consistent in terms of 

generating socio-political indices related to democracy, rule 

of law, global risks, climate risks and social gaps, in 

addition there was also significant information regarding 

socioeconomic indices involving carbon emissions, 

particulate matter, human development, social inequalities 

and population trends. 

The data for the indicators proposed for this study 

(Table2) were extracted from official websites of 

international and non-governmental organizations, scientific 

articles and global platforms. In the first case, when 

referring to bioclimatic indicators (temperature, 

precipitation, humidity-urban aridity) were taken from 

portals and publications of the World Meteorological 

Organization (OMM, 2018),the geographic-urban indicators 

(altitude, urban area, heat islands, population density and 

urban sprawl) were extracted from official reports of 

Demography of  World Urban Areas (2018) and reports of 

climate behavior of South American metropolises (Wu et 

al.,2019), as for socio-economic indicators data such as 

population (Pob), energy (E), carbon emissions (Cf,CO2), 

pollution (PM2.5-PM10), social inequality (GINI) and 

human development (HDI), were extracted from scientific 

articles (Morán et al., 2018) , international agencies such as 

the World Health Organization (OMS, 2018) and the United 

Nations Development Programme (PNUD, 2018). 

Finally, the selected socio-political indicators such as 

the democracy index (DI), rule of law (WJP), global risks 

(WR), Global climate risks (CRI) and multidimensional 

poverty index (MPI), were obtained from annual reports of 

organisations such as the Economic Intelligence Unit (better 

known by its acronym EIU,2018), the Global Justice Project 

(WJP, 2021) of the Germanwatch Organization, the Global 

Climate Risk Index (Germanwatch, 2021), the Oxford 

Poverty and Human Development Initiative (OPHI, 2023), 

and the Global Risk Index (World Economic Forum, 2021). 

The indicators selected by the study and the respective 

source are shown in Table 2. 
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Table 2.  Indicators and their respective data sources 

Indicator Unit Data   

Altitude (Alt) (m.a.s.l) Wu et  al.(2019) 

Urban area (UA) Square kilometers 

(SK) 

 

Demographia World  

Urban Áreas (2018). 

Population density 

(Pd) 

  

Inhabitant 

 /km2 

Demographia World  

Urban Áreas (2018). 

Urban Growth 

(UG) 

% urban 

growth/year 

 

Urban Áreas (2015-

2018) 

Urban Heat Islands 

(UHI) 

Temperature 

 (◦C) 

Wu et al.(2019). 

Temperature (Tm) (◦C) World Meteorological  

Organization (2021) 

Precipitation (Pp) (mm/year) World Meteorological  

Organization (2021) 

Humidity (H) %/year World Meteorological  

Organization (2021) 

Aridity index (AI) % Water 

availability 

World Meteorological  

Organization (2021) 

Population 

 (Pob) 

Millions of 

inhabitants 

 

Demographia World 

Urban Areas (2018). 

Carbon footprint 

per capita (Cf) 

 cápita (Hcpc)  

Tons/year 

 

Morán et al. (2018). 

Carbon emissions 

year (CO2) 

 (CO2U) 

Tons/year 

 

Morán et al. (2018). 

Fine Particulate 

Matter (PM2.5) 

Micrometer -

diameter 

 

World Health  

Organization (2018)   

Coarse Particulate 

Matter (PM10) 

 

Micrometer -

diameter 

 

  

World Health  

Organization (2018)   

Energy (E) Kilowatt hours-

year (Kwh/year) 

World Bank 2021 

Energy intensity 

 (EI) 

Cost-

energy/GDP  

World Bank 2021 

 

Gross domestic 

product (GDP) 

Thousands ($) 

Millions (year) 

  

World Bank 2021. 

Economy per year 

(Economy) 

Thousands ($) 

Millions (year) 

 

World Bank 2021. 

Social inequality 

index 

 (GINI) 

Social inequality 

hab /año 

World Bank 2021. 

Human 

Development Index 

(HDI) 

Human 

Development  

 (PNUD, 2018). 

Democracy index 

(DI) 

Democracy  The Economist 

Intelligence (2018) 

 Multidimensional 

poverty index 

(MPI) 

Multidimensional 

poverty 

Oxford Poverty & 

Human (2023) 

Development Initiative.  Global Climate 

Risk Index (CRI) 

Loss of human 

life (GDP). 

 Germanwatch (2021) 

Global risks Index 

(WR) 

Resilience Wolrd Economic 

Forum (2021) 

(2021) Global Justice 

Project index(WJP) 

Rule of law 

 

Global Justice Project 

(2021) 

2.2 Dependent variables and metropolises categorization 

In this study it was proposed to recognize metropolitan 

clusters of various types of indicators (mentioned in 2.1), 

which will be organized in databases according to three 

dependent variables (DV), namely the regional Köppen-

Geiger climate zone (hereafter DV-Climate zone), regional 

population stratification (hereafter DV-Population 

stratification),  and regional geographical location (hereafter 

DV-Geographical location). 

In order to organize the work it was necessary to 

establish the different categories of the 70 regional 

metropolises, therefore, a respective coding was assigned to 

the metropolises according to the DV based on, 1) the 

Köppen Geiger climate (Beck et al.,2018), the population 

stratum (UN-Habitat, 2016) and the geographic coordinates 

(Geographic Coordinate System), defined as follows 

according to Köppen-Geiger (Af, Am, Aw, As, Bsh, Bsk, 

Bwh, Bwk, Cfb, Cfa, Csc, Csb, Cwc, Cfa, Cwa: Cwb), 2) 

according to population ranges (500 thousand - 999 

thousand are Intermediate metropolises (IM), 1 million to 

less than 5 million are Medium metropolises (MM), 5 

million to less than 10 million are Large metropolises (MG) 

and finally more than 10 million inhabitants, are Megacities 

(MC), 3) according to their geographical parallels such as 

the Northern Temperate Zone (NTZ) Arctic Circle (Latitude 

66.33)- Tropic of Cancer (Latitude 23.5 N); Intertropical 

Zone (IZ) Tropic of Cancer GCS (Latitude 23.5 N)-Tropic 

of Capricorn (Latitude -23.5) and Southern Temperate Zone 

(STZ) Tropic of Capricorn GSC (Latitude -23.5)-Antarctic 

Circle (Latitude -66.33). In addition to these codifications 

and to differentiate the analyses in each DV, an altitudinal 

prefix was added or excluded from the metropolis (adding P 

to the DVs), according to: a) low altitudes or altitudes with 

prefix 1 (0 m.a.s.l - 200 m.a.s.l), b) medium altitudes with 

prefix 3 (300 m.a.s.l - 800 m.a.s.l) and high altitudes, with 

prefix 5 (900 m.a.s.l). Therefore, the final coding was 

established with the following components: (a) DV-Climate 

zone (Bsh, Bsk, Cwb; (a1) DVClimate zoneP (1Bsh, 3Bsk, 

5Cwb). (b) DV-Population stratification (BskMI, CscMM, 

BwkMG,AwMC);(b1)DVPopulationstratificationP(1BskMI

,3CscMM,5BwkMG,1AwMC);(c)DV-Geographicallocation 

(CwaGCS (ZTN), AmGCS (ZI), BwhGCS(ZTS)(c1)DV-

Geographical locationP(1CwaGCS (ZTN), 3AmGCS (ZI), 

5BwhGCS (ZTS). 

 

2.3 Exploratory data analysis 

After recording each metropolises according to the 

components of each DV, statistical analysis was performed 

using R software version 4.0.2 (R Development Core Team, 

2023) and the cluster libraries factoextra, NbClust, 

pheatmap and clustertend. Three analyses were performed: 

exploratory and general frequency of indicators, Pearson 

correlations and validation of statistical hypotheses. 
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The hypotheses were based on the Hopkins statistic 

(Kassambara, 2017), which assesses the clustering tendency 

of a dataset by calculating the probability that the data come 

from a uniform distribution. If they come from a uniform 

distribution, the information is random. According to these 

criteria, hypothesis testing was defined as the null 

hypothesis that a dataset has uniform behaviour, and the 

alternative hypothesis that some kind of clustering exists in 

the dataset. The decision criterion was defined as follows: if 

the statistic obtained is in the interval 0.0 < H< 0.5  the null 

hypothesis is not rejected, but if on the contrary the value of 

H is greater than 0.5 it can be concluded that in the data set 

there is evidence to use multivariate clustering methods, 

accepting the alternative hypothesis. A cluster model (CM) 

was then applied to rank and organize indicators 

contributing to each cluster, and a statistical significance 

assessment (Hopkins statistic) was performed to select 

clusters according to the methods: Elbow, (compactness), 

Silhouette (quality), Gap statistic, (variation) and Nablus, 

and finally, with the graphic tool heatmap, the clusters of 

Köppen-Geiger-indicator climates were selected in 

heterogeneous groups and which are most associated with 

the indicators visualized in the heatmap according to the 

intensity of the traffic light (red, high association, blue, low 

association and white very low association). 

2.4 Validation of clusters obtained in the CM 

A multivariate discriminant model (DM) was used to 

evaluate the presence of statistically significant differences 

in the DV clusters defined with the CM, including or 

excluding the altitudinal prefix, and the univariate variance 

(ANOVA) was calculated, to validate key indicators that 

have a greater discriminant capacity within the dataset 

(p<0.0001). Then, to assess the membership of the data 

(clusters), a random partitioning of the information from the 

databases was performed, using a selection of 70% of the 

data for the training group and the remaining 30% of the 

data as the test (validation) group. After validating the 

clusters and indicators with the discriminant models, the 

socio-environmental and climatic characterization of the 

different clusters (according to the DVs) was carried out, 

which made it possible to describe the characteristics of 

each metropolitan group in a Köppen Geiger base 

cartography (cartographic layers updated by Beck et al., 

2018), within a Geographic Information System (GIS). 

Subsequently, twenty (20) regional metropolises were 

taken, located in different clusters according to the DVs 

with the lowest classification error and with the following 

influential indicator requirements: per capita carbon rates, 

Köppen Geiger climate conditions, energy consumption-

management/year, pollution levels, incidence of Urban Heat 

Islands, socio-economic dynamism, social inequality, 

population size, democratic and rule of law levels, and 

climate and global risk conditions. In this selection of 

metropolises, the overall performance (deficits and 

strengths) of climate policies provided by international 

organisations in terms of sustainability, resilience and 

liveability will be verified. To identify these indicators 

(sustainability, resilience and liveability) that are the basis 

of global climate policies, the following initiatives were 

reviewed: the 100 Resilient Cities project 100RC, 2013 

proposed by the Rockefeller Foundation (Hofmann, 2021), 

which considers climate risks and vulnerability, 

governance, human development, resilience and the 

Köppen-Geiger climate classification of metropolises. The 

second case considered the ARCADIS index (2015) of 100 

sustainable city indices measuring energy consumption, 

waste, pollution, GHG emissions, economy, income and 

energy efficiency. The third proposal evaluated was the 

Resilient Cities Index (Economist Impact, 2023) which 

measures mitigation, heat events, social integration and 

resilient economy, and finally the fourth report considered 

included the livability index, known as The Global 

Liveability Index (EIU,2024), which includes 173 

metropolises and 30 indicators divided into five categories: 

political stability, quality of life, environment and culture, 

health, education and infrastructure. 

3. Discussion and Results 

The statistical validity of the analyses yielded a value 

of H= 0.1854, considering that the R software at the time of 

the calculation estimated (1-H), the comparison will be as 

follows: (1-H) = 0.8146 > 0.5 and therefore the null 

hypothesis is rejected. The data do not follow a uniform 

distribution and it is valid to assume that there is a 

clustering tendency. When performing the categorization 

over a period of 5 years (2014-2018), a total of 350 

metropolises frequencies were obtained in each of the DVs, 

subsequently, when performing an analysis of the 70 

categorized metropolises, it was mainly noticed that when 

altitudinal discrimination (prefix, denoted with the letter P) 

is performed, new metropolises types are generated 

according to their altitude, climate, population and 

geographical location if we compare it with the 

metropolises types where P was not applied. This new 

coding implies a greater heterogeneity of metropolises to 

the already existing in the Latin American region. As 

examples of this variability (application or exclusion of P), 

for each DV we obtained the following numbering: DV-

Climate zone (15); DV-Climate zoneP (28); DV-Population 

stratification (26); DV-Population stratificationP (37); DV-

Geographic location (23) and DV-Geographic locationP 

(32). 

The Elbow, Gap and NbClust methods (Figure 2) 

generally suggest an average total of four (4) climate 

clusters for the DVs, and Silhouette recommends an average 

of eight (8).Regarding the indicator clusters, the cluster 

model (CM) and the heatmap graphical tool suggest 

between three and four clusters in general (for the three 

DVs), however in each group of dendrograms a quite 
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differentiated Euclidean distance is presented according to 

the types of indicators (Figures 3a,3b.3c,3d,3e,3f), as an 

example of these trends, we have the clusters of indicators 

with a lower Euclidean distance, which are mainly socio-

political and socio-economic indicators such as democracy 

(DI), carbon footprint (Cf), rule of law of the population 

(WJP), size of the economy (Economy) and income (GDP) 

to name a few, and other examples of clusters with a high 

Euclidean distance for socio-economic indicators such as 

urban pollution (PM2.5-PM10), and multi-dimensional 

poverty (MPI) and bioclimatic ones including urban 

temperature (T), precipitation (P) and humidity (H). 

According to the criteria of the analyses that seek to form 

heterogeneous and correlated groups of climate-indicators, 

several clusters were selected with a lower range than the 

average recommended by the methods, so the following 

number of clusters was considered excluding and including 

P: VD-Climate zone (3); VD-Climate zoneP (3); VD-

Population stratification (2); VD-Population stratificationP 

(2); VD-Geographic location (4) and VD-Geographic 

locationP with 3 respective clusters. 
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Fig.2.   Clusters with climate heterogeneity criteria. In heatmap a) (VD-

Climatic zone), b) (VD-Climatic zoneP), c) (VD-Population stratification), 

d) (VD-Population stratification), e) (VD-Geographic location),f) (VD-
Geographic location). Colour of the indicators organised in the heatmap: 

Bioclimatic (green), urban-geographical (brown), socio-economic 

(grey), socio-political (purple). Own elaboration 

3.1 Cluster validation with MD 

The percentage of misclassification was acceptable in 

the analyses, particularly when P is not included, according 

to this point the lowest errors (30% of the validation), were 

DV-Geographic location (4.7%) and DV-Climate zone 

(6.6%), so in these DVs a lower dispersion in the point 

cloud is observed (Figure 3). Other cases that attracted 

attention were the high errors in DV-Population 

stratification (14%) and DV-Population stratification-P 

(11.3%), which were expected to have lower errors, but an 

overlap of not highly correlated indicators may have 

influenced the results. Percentage data for discriminant 

functions (hereafter LD) and misclassification errors are 

explained below. 

DV-Climate zone: 

The proportion explained in the LDs were, first in LD1 

54.66 % of the total variability for the first eigenvalue, and 

the second LD2 explains 45.34 % of the same total 

variability, implying that between them they explain 100.0 

%. In the 70% training data of the cluster observations 

(hereafter C), the first Cluster 1 was made up of 52 

observations and 42 (80.7%) were correctly classified. In 

cluster 2 out of the 182 observations in the group 179 were 

correctly classified (98.4%) and for cluster 3, out of 10 

observations all were classified correctly (100.0%). 

Therefore, the probability of being correct using this model 

is 94.7% (overall error of 5.3%). In the test data (30%), out 

of 23 observations in Cluster 1, 16 (69.6%) were correctly 

classified, in cluster 2 out of 78 observations all (100%) 

were correctly classified, and in Cluster 3 out of 5 

observations also 100.0%. Therefore, this result implies that 

the probability of being correct using this model is 93.4% 

(overall error of 6.6%). 

DV-Climate zoneP 

The proportion explained by LD1 is 75.07% of the 

total variability for the first eigenvalue, and LD2 is 24.93% 

of the same total variability. The 70% training data 

explained a proportion in LD1 of 69.43%, and LD2 of 

30.57% of the total variability. In the Clusters the hits were, 

in Cluster 1 with 7 (100.0%), in cluster 2 with 219 (92.2%), 

and in Cluster 3 with 7 (100%), with a hit probability of 

95.5% (overall error 4.5%). In the test data (30%), the 

probability of hits on observations in Cluster 1 was 3 

(100%), Cluster 2, with 91 (90.0%) and Cluster 3, with 3 

(100%), giving a probability of 91.5% hits (overall error of 

8.5%). 

 

DV-Population stratification 

The overall proportion explained in LD1 (88.6%) of 

the total variability (overall error of 11.4%). In the 70% 

training data the hits were 52 observations in Cluster 1, 

where 37 (71.2%) were correctly classified, and in Cluster 2 

with 179 (93.2%). Therefore, this result implies that the 

probability of being correct using this model is equal to 

88.5% (overall error of 11.5%). In the test data (30%), the 

23 observations in Cluster 1 were correctly classified 13 

(56.5%), in cluster 2 out of 83 78 (94.0%), and 

misclassified 5 (6.0%). Furthermore, the probability of 

being correct using this model for the two groups is equal to 

88.8% (overall error of 14.2%). 

 

DV-Population stratificationP 

The proportion explained by the LD1 function is 

54.66% of the total variability for the first eigenvalue, and 

LD2 is 45.34% of the same total variability. In the training 

data, (70%), the proportion explained by LD1 is 88.0% of 

the total variability, (overall error of 12.0%). In cluster 1 the 

hit probability was 37 hits (71.2%) and in Cluster 2 with 

181 hits (94.3%), with the group's hit probability being 

89.3% (error 10.7%). For the other 30%, the observations 

were in Cluster 1 with 37 hits (60.8%) and cluster 2 with 

181 hits (96.4%), with a group probability of 88.7% (overall 

error 11.3%). 

 

DV-Geographical location 

The overall proportion explained were as follows; in 

LD1 (63.9%), LD2 (25.51%) and LD3 (10.59%), which 

explain 100% of the total variability. In the 70% training 

data LD1 was 61.77% of the total variability for the first 

eigenvalue, the second LD2 26.02% of the same total 

variability, and LD3 (12%), which implies that between 

LD1 and LD2 they explain 87.79% of the total variability. 

Of the 10 observations in Cluster 1, 7 (70.0%) were 

correctly classified, in Cluster 2, 17 (80.95%) out of 21 

were observed, and in Cluster 3, all 7 observations were 
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correct (100.0%), and in Cluster 3, all 7 were correct 

(100.0%). Consequently, the probability of correctness of 

the observations by Cluster 1, cluster 2 and Cluster 3 are 

70.0%, 80.9% and 100% respectively, and for cluster 4 

98.5%. This result verifies that the probability of being 

correct using this model is equal to 96.9% (overall error of 

4.1%). In the test data (30%), out of 5 observations in 

Cluster 1, 2 (40.0%) were correctly classified, in Cluster 2, 

out of 9 observations 8 (88.9%) were correctly classified, in 

Cluster 3 out of 3 observations were correctly classified 

(100.0%), and finally in Cluster 4, out of 89 observations 88 

(98.9%) were correctly classified. Therefore, the result 

suggests a probability of being correct of 95.3% (overall 

error of 4.7%). 

 

DV-Geographical locationP 

The proportion explained by LD1 is 86.73% of the 

total variability for the first eigenvalue, and LD2 explains 

13.27% of the same total variability. In the 70% training 

data, the proportion explained by LD1 was 85.93% of the 

total variability and LD2 14.07% (of the total variability). 

Forty-eight (48) observations were correctly classified in 

Cluster 1 (81.4%), cluster 2 with 5 (71.4%), and Cluster 3 

with 170 observations (95.5%), with a hit probability of 

90.9% (overall error of 9.1%). In the 30% Cluster 1, 21 

observations were correctly classified (80.8%), cluster 2 

with 3 (100.0%), and Cluster 3 with 72 observations 

(93.5%). This result implies a hit probability of 90.6% 

(overall error of  9.4%). In Figure 3 shows the scatter plots 

of the DVs and shows in Figure 3a (DV-Climatic zone) and 

Figure 3e (DV-Geographical location) the lowest scatter in 

the point clouds, according to the lowest classification 

errors obtained. Note that in Clusters 2 and 4 (Figure 3a-e) 

the highly correlated groupings of metropolises are 

heterogeneous in Köppen-Geiger climates. 

 

 
 
Fig.3. Dipover plots evaluated with the MD. In the Heatmaps: a) (DV-
Climate Zone),b)(DV-Climate Zone P), c) (DV-Population stratification), 

d)(DV-Population stratificationP), e) (DV-Geographical location), f) (DV-
Geographical locationP).  

In black circle; the DV where the smallest classification error. 

3.2 Recognized discriminant indicators 

 

With the above results, the DVs with the lowest 

misclassification errors in the dataset were obtained to 

select the clusters and discriminant indicators characterizing 

the different Köppen Geiger metropolis groups (Table 3). In 

the first case the DV-Geographic location with 4.7% 

misclassification error (at 30% of data validation), and in 

the second case DV-Climate zone with 6.6% mis 

classification error (at 30% of data validation) was 

recognized. Discriminant indicators of DV-Geographic 

location (in bold Table 3-4), according to Fischer linear 

functions, determined in LD1 urban and socio-political type 

indicators, such as Urban Heat Island (UHI) and the state of 

the law of the population (WJP), both were able to explain 

61% of the data, for LD2, the socio-political indicator found 

that the democracy index (DI) could explain 26% 

(contribution to the data), and with LD3 the rule of law of 

the population (WJP) explained 12% of the data. It was 

noted that the discriminants characterize different clusters, 

as in the case of Cluster 3, where DI and WJP characterize 

dynamics of 3% of the metropolises and in the case of 

Cluster 4, the Urban Heat Island (UHI) characterizes 84% 

of metropolises. For the DV-Climate Zone, the socio-

political indicator population's rule of law (WJP), is the 

most discriminating (56% in LD1 and 43% in LD2), which 

characterizes Cluster 2 that groups a minority group the 

metropolises (4%). 

 
Table 3. Discriminant indicators 

Highlighted in bold: UHI (Urban Heat Islands; DI (Democracy 

Index), WJP (Rule of Law Index),DI (democracy index). 

 

 
 

 DV- Climate-zone

Indicators LD1 LD2 LD1 LD2

T 9.29E-02 -1.44E-01 PM10 -4.82E-02 4.62E-02

UHI 5.18E-01 1.68E-01 E -5.88E-05 -1.80E-04

PM25 -2.32E-03 8.50E-04 GDP 3.86E-05 -9.44E-05

H 5.44E-02 4.11E-03 DHI -2.17E+00 6.95E+00

AI 1.14E-01 -4.15E-02 GINI 7.81E-03 -3.64E-02

AU 1.26E-04 -3.75E-04 DI -5.84E-01 -1.08E+00

UG -2.29E-01 1.63E-01 CRI 6.03E-03 1.12E-02

Cf 3.16E-01 1.18E+00 WR 5.88E-02 1.26E-01

PM25 6.92E-02 -4.80E-02 WJP 1.17E+01 1.78E+01

DV-Geographical location

Indicators LD1 LD2 LD3 LD1 LD2 LD3

T 1.30E-01 9.16E-02 2.02E-01 PM25 -7.04E-03 -5.07E-02 2.49E-02

UHI 5.33E-01 3.05E-01 5.28E-02 PM10 -3.73E-02 2.08E-03 -2.48E-02

P -4.39E-03 -4.02E-03 -1.21E-03 E 9.14E-05 -1.39E-04 2.20E-04

H 7.76E-02 -5.85E-02 -1.63E-02 GDP -1.04E-05 -1.03E-04 1.90E-04

AI 1.74E-01 1.47E-01 2.63E-02 Economy 7.46E-12 4.83E-11 -6.68E-12

AU 1.87E-05 -4.84E-04 -3.44E-04 DHI -3.10E+00 -3.03E+00 -1.70E+00

Pd -8.80E-05 -6.59E-05 -3.51E-05 GINI 1.63E-03 9.77E-03 7.62E-02

UG -1.84E-01 -2.44E-02 -2.69E-01 DI -5.37E-02 1.10E+00 -2.44E-01

Pob -7.13E-08 -5.93E-07 2.72E-07 CRI 2.87E-05 -6.71E-03 -3.91E-03

Cf -5.23E-01 6.86E-01 -2.61E-01 WJP 8.57E-01 -1.57E+01 1.92E+00

CO2 -2.29E-08 -6.67E-08 -3.45E-08
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Table 4 .  Classification errors and percentage of explanation of the 

discriminant indicators for each DV. Highlighted in bold 

 

Dependent variable (DV) Error (30%) 

DV- Climate Zone P 8.5 

DV-Population stratification 14.2 

DV-Population stratificationP 11.3 

DV-Geographical location 

 

4.7 

DV-Geographical locationP 

 

 

 

9.4 

 

 

Percentage of explanation of the discriminant indicators 

 

DV-Climate Zone : LD1 (56)  (WJP) , LD2 (43)  (WJP) 

(Cluster 3 (WJP) 4% of metropolises) 

DV- Climate Zone P : LD1 (69)  (HDI), LD2 (30)  (Cf) 

(Cluster 3 (Cf-DHI) 3% of metropolises) 

DV-Population stratification : LD1 (89) (MPI, WJP) 

(Cluster 2  (WJP) 90 % of metropolises) 

DV-Population stratificationP : LDI (89.3) (WJP, UHI, Cf) 

(Cluster 2 (WJP, UHI, Cf) 90 % of metropolises) 

DV-Geographical location,: LD1 (61) (UHI,WJP), LD2 (26) 

(DI), LD3 (12) WJP 

(Cluster 4 (UHI) 84 % of metropolises) 

DV-Geographical locationP: LD1 (85) (Cf, HDI,WJP) LD2 

(14) (HDI,WJP) LD3 (12) (WJP) 

(Cluster 3 (Cf,HDI,WJP) 84 % of metropolises) 

 
 

4. Socio-environmental and climatic conditions 

 

The results of this study describe a very varied socio-

environmental and climatic characterization of Latin 

American metropolises according to the most 

discriminating  DVs and indicators.  

 In the Table 4 and Figure 4a and 4b the conformation 

of the metropolitan Clusters is detailed, note that the main 

spots in both DV are conformed by a majority group of very 

heterogeneous metropolises in Köppen Geiger climates, 

particularly in Cluster 2 (DV-Climate zone) is conformed 

by 74% of the total metropolitan in study, and in the DV-

Geographic location by 84% of metropolitan groupings. In 

other cases, when talking about smaller groups, in Cluster 1 

of the DV-Climate zone, 22% of arid and desert climates 

are grouped mainly (Bsh, Bsk, Bwh, Bwk) and in Clusters 1 

of the DV-Climate zone, 22% of arid and desert climates 

are grouped mainly (Bsh, Bsk, Bwh, Bwk) and in Cluster 2 

of VD-Geographical location we find 9% of metropolitan 

areas belonging to arid and desert Köppen Geiger zones 

(Bsh,Bsk,Bwh,Bwk), distributed from the intertropical zone 

(IZ) to the North Temperate Zone (NTZ), where the 

metropolises of Mexico are particularly appreciated. 

 
 

Fig.4. Socio-environmental and climatic characteristics of clusters (C) 

including twenty (20) selected metropolises a) clusters in VD-Climatic 
zone, b) clusters in VD-Geographical location.  

 

4.1Discriminant-indicators associated with sustainability  

,resilience, and liveability 

 

To assess the relationships between socio-

environmental and climatic dynamics of metropolises and 

performances on sustainability, resilience and liveability, 20 

regional metropolises of various Koppen Geiger-indicator 

climates were taken as a reference in this study, within the 

DVs with the lowest percentage of error (named in 2.4 and 

3.2). The selection criteria of the metropolises were based 

on urban environments with the following characteristics: 

(a) Democratic levels, human development, rule of law and 

low climate risks (Concepción M, Buenos Aires, Lima, 

Montevideo, Santiago de Chile,), b) Levels of pollution, 

carbon emissions, inequality and hot spots (Bogotá, Mexico 

City, Ciudad Juárez, Medellin, S. Paulo, Tijuana). 

c) Significant climate risks and low global resilience 

(Cartagena, Ciudad Juarez, Tijuana).d) Urban pollution and 

carbon footprint (Cali, Curitiba, Panama City, Mendoza, P 

Alegre, Quito, Rio de Janeiro).e) Large metropolises and 

megacities with high population rates and urban areas 

(Mexico City, Bogota, Buenos Aires, Lima, Rio de Janeiro 

and Santiago de Chile), and finally we have the 

metropolises group with the following characteristics, f) 

Economic dynamism (Buenos Aires, Bogota, Mexico City, 

Lima, Monterrey, Santiago de Chile and Sao Paulo). 

On the other hand, the performance of the metropolises 

concerning sustainability, resilience and liveability was 

evaluated with the indices proposed in the four international 

reports (see Table 5), which define the following 

parameters: firstly, the 100 Resilient Cities (Hofmann, 
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(2021). project initiatives proposed by the Rockefeller 

Foundation, which considers climate risks and vulnerability, 

governance, human development, resilience and the 

Köppen-Geiger climate classification of the metropolises. 

Secondly, the ARCADIS (2015) index of 100 sustainable 

city indicators measuring energy consumption, waste, 

pollution, GHG emissions, economy, income and energy 

efficiency was taken. A third proposal was also considered, 

the Resilient Cities Index (Economist Impact, 2023), which 

measures mitigation, heat events, social integration and 

resilient economy, and finally the Global Liveability Index 

(EIU, 2024), which includes 173 metropolises and 30 

indicators divided into five categories: political stability, 

environment and culture, health, education, infrastructure 

and quality of life. 

Table 5. Sustainability, resilience and liveability criteria from international 
reports. 

Metropolises assessment criteria by indicator 

ARCADIS 

(Sustainability) 
Social Performance, Quality of Life, CO2 

capture-Carbon Footprint, Energy, 

Pollution, Economic Performance). 

100RC 

(Resilience) 

Vulnerability and Risk, Governance, Rule 

of Law, Resilience, Human Development, 

Social Equity, Koppen Geiger Climates) 

Resilient Cities 

Index (2023)  

(Resilience) 

 

 

Energy, water availability, , flooding, 

heat stress, pollution, disaster 

management, decarbonization, waste 

management, urban resilience, social 

inclusion, access and trust in government, 

quality of life, safety, income inequality, 

social protection, economic strength, 

economic exposure and risk, innovation 

and entrepreneurship, and human capital). 

Global  

Liveability Index 

(Liveability) 

Political stability, environmental 

conditions, climate and educational 

attainment) 

 

4.2 Socio-environmental-climatic characterizations and 

sustainability, resilience and habitability performance 

 

In the description of the climatic groups we have in the 

first place the metropolitan conglomerate belonging to the 

VD-Climate Zone, where particularly in Cluster 1 are 

located metropolises with arid climates such as Cartagena, 

Tijuana and Monterrey (Bsh, Bsk), and desert climates such 

as C. Juárez and Mendoza (Bwk). These urban 

environments with dry climates (arid-desert) are 

characterized in their socio-environmental and climatic 

dynamics by social gaps, altitudinal conditions, urban 

sprawl, pollution and the energy intensity of their economy 

(PM2.5, PM10, Alt, MPI, UG, EI). Now if we evaluate their 

performance in sustainability, resilience and habitability, we 

note that they can be characterized according to aspects of 

socio-economic evolution and social equity, which are 

important parameters in sustainability; however, their high 

rates of pollution, which is characteristic of areas in 

transition towards greater aridity according to Georgescu et 

al. (2013), could influence resilience; however, despite the 

impacts of pollution, the marked metropolitan energy 

efficiency is noteworthy, which allows the reduction of 

particulate matter. On the other hand, in terms of 

habitability, the socio-political deficit (rule of law and 

political instability), increase habitat weaknesses, so it is 

important to work on reducing existing social gaps and 

improving the level of governance, which can plan more 

habitable urban spaces. 

The case of Cluster 2, it includes a majority group of 

metropolises with subtropical climates such as S. Paulo and 

P. Alegre (Cfa), tropical ones such as C. Panama, R. 

Janeiro, Cali and Medellin (Aw, Af, As) and temperate ones 

such as Bogotá, B.Aires, C.D., C.D., Mexico, Curitiba, 

Montevideo and Quito (Cfb, Cwb, Cfb, Cfb, Cfb 

respectively). Mexico, Curitiba, Montevideo and Quito 

(Cfb, Cwb, Cfb, Cfb, Cfb respectively), which present 

dynamics due to bioclimatic interactions and urban aridity, 

as well as having an important incidence of Urban Heat 

Island (UHI), which are generally associated with high 

population density and social inequality (T, GINI, UHI, Pd, 

H, P, AI). These metropolises are also characterized by high 

pollution rates as was found in Mexico City and Sao Paulo, 

as well as a general lack of democratic deficits (EIU, 2018), 

but the most influential aspects that explain urban dynamics 

are the marked social inequalities, which affect the deficit in 

sustainable concepts (social performance/equity). In terms 

of resilience, it is noted that these metropolises need to 

monitor heat incidence (UHI), review bioclimatic patterns 

(geographical zones of high climate risks) and improve 

inadequate political management (democratic deficits), 

according to EIU (2018), which are factors that can increase 

extreme events and weaken the resilient support of 

metropolitan space, comfort and habitat. 

Cluster 3 includes a group of two metropolises in 

Chile, with temperate climates such as Concepción and 

Santiago (Csb, Csc respective), and where socio-

environmental and climatic conditions are recognized due to 

a high rule of law of the population and democratic 

standards above the regional average (EIU, 2018), further 

characterized by low carbon footprint rates, and high 

standards of human development, resilience, income, and 

economic, and energy dynamism (WR, HDI, DI, WJP, 

CO2, GDP, Economy, Cf, E). Therefore, according to the 

indicators proposed by the reviewed reports, these 

metropolises are more resilient by incorporating socio-

political aspects (democracy, governance and rule of law), 

more sustainable by their socio-economic conditions 

(carbon, energy and pollution management) and liveable by 

possessing high human development, political stability and 

acceptable environmental conditions. 

Regarding the DV-Geographical location, it contains 4 
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clusters, however the selected metropolises are present in 

only three (C2, C3, C4), as examples, we have in Cluster 2 

the metropolitan group of Mexico, which are located in the 

North Temperate Zone (NTZ), and which are belong to arid 

climates like Monterrey (Bsh) and Tijuana (Bsk), and desert 

ones like Ciudad Juarez (Bwk). The socio-environmental 

and climatic dynamics of this group are characterized by 

human development, energy and carbon impact (Cf, E, 

GDP, HDI). Now within international climate policy 

performance, we can affirm that the populations in this 

group have adequate economic and human development 

within sustainable standards, and in terms of their resilient 

aspects, the socioeconomic aspects (human and economic 

development) stand out, which contribute to the quality of 

life of the population. However, deficits are observed in the 

management of carbon, energy and pollution, which in dry 

climates (arid and desert) are associated with environmental 

conditions, energy, and emissions (Guttikunda et al., 2019). 

For habitat conditions, we note that extreme (arid) climatic 

conditions, governance deficiencies and low human 

development (HDI), hinder the implementation of climate 

policies to improve urban living space. 

In the case of Cluster 3, we have two metropolises 

(low and medium altitude), one with a desert climate such 

as Lima (Bwh) located in the Intertropical Zone (IZ) and the 

other with a Mediterranean climate and dry summer such as 

Santiago de Chile (CSC), located in the Southern Temperate 

Zone (STZ), both characterized by the democratic level (DI) 

and the rule of law of the population (WJP), as well as 

having characteristics associated with large urban areas, 

economic dynamics, relative climate risks and low carbon 

rates (AU,GDP,Pob,CO2,H,CRI,DI,WJP), which position 

them as highly sustainable, resilient and liveable urban 

environments, and their urban and environmental, socio-

economic and political infrastructures allow for strategies 

that can optimize governance in a city (Mees, 2016). 

Finally, in Cluster 4, 84% of the metropolises under 

study (15% of the sample to assess sustainability, resilience 

and habitability) were organized, and which, due to their 

geographical conditions, are distributed in the intertropical 

zone (IZ) and in the southern temperate zone (STZ). These 

metropolises (varied climate and altitudes) are characterized 

by marked bioclimatic patterns (T, P, AI), heat incidence 

IU), and social inequality (GINI), so this result clearly 

explains the relationships between the social vulnerability 

of the population and the effects of heat (Rosenthal et al., 

2014). On the other hand, this important climate group 

presents few sustainable and livable conditions, due to low 

democratic and human development performances, and 

their resilience can be affected by climatic fluctuations (heat 

stress) in urban areas with high social risk and significant 

socio-economic inequalities as evidenced in metropolises 

with tropical climates. Tables 6 and Table 6.1 define the 

deficits and strengths, which allow for verifying the 

performance of the selected metropolises according to 

climate policies (sustainability, resilience, and Liveability). 

 

Table 6. Sustainability, resilience and liveability characteristics of the 

selected metropolises according to VD-Climate zone. 

Köppen Geiger colours are determined according to the update 
proposed by Beck, et al., 2018. Cluster (C). Highlighted in bold 
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Bsh- Bsk 

 

Sustainability 
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Table 6.1. Sustainability, resilience and liveability characteristics of the 

selected metropolises according to DV-Geographical location. 

Köppen Geiger colours are determined according to the update 
proposed by Beck, et al, 2018. Cluster (C). Highlighted in bold 
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economic and socio-political decision-making of 

governments, scientists and planners, and secondly, to the 

uncertainty of extreme climate change in the medium term, 

which can have a significant impact on the bioclimatic 

patterns of the region, and thus increase uncertainties in the 

evolution of regional metropolises towards more 

sustainable, resilient and liveable concepts. 
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