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Abstract 

Taking into consideration that several real systems may be represented in a special class of bilinear systems, in this work, a 

new algorithm is proposed for the self-tuning control, combining recursive parameters estimation and generalized minimum 

variance criterion, of an extended and more relaxed class of bilinear systems, where the control action could be presented 

only in the bilinear term. The closed-loop stability and reference tracking of the proposed self-tuning control is proved us-

ing a Lyapunov function. The idea of the proposed algorithm is based on the discrete-time sliding mode control concept. 

The existence of quasi-sliding regimes for the controlled bilinear system class is also showed. To validate the proposed al-

gorithm, the nuclear fission model is considered as a case of study. 

Key words: Bilinear systems, self-tuning control, sliding mode control, nuclear fission. 

 

Resumen 

 

Tomando en cuenta que una gran cantidad de sistemas físicos reales pueden ser representados a través de una clase espe-

cial de modelos matemáticos bilineales, en este trabajo se propone un nuevo algoritmo de control auto-ajustable, el cual 

combina la estimación de los parámetros del control de manera recursiva y el criterio de mínima varianza generalizada, 

para una clase extendida y más suavizada de sistemas bilineales, donde la acción del control puede estar presente solamen-

te en el término bilineal del modelo. Se demuestra la estabilidad global del sistema en lazo cerrado a través del uso de una 

función de Lyapunov, además se demuestra el seguimiento de la señal de referencia por parte de la señal de salida. La idea 

del algoritmo que se propone se basa en el concepto de control por régimen deslizante, por consiguiente se demuestra la 

existencia de régimen semi-delizante para la clase de sistemas bilineales controlada por el algoritmo propuesto. Como caso 

de estudio para validar el algoritmo propuesto se considera el modelo de fisión nuclear. 

Palabras claves: Sistemas bilineales, controladores auto-ajustables, control por régimen deslizante, fisión nuclear. 

 

1 Introduction 

It has been shown under relatively mild conditions that 

a large class of nonlinear systems can be approximated with 

arbitrary precision using bilinear models with finite number 

of coefficients (Brockett, 1976). In addition, many concepts 

associated with linear systems can be extended to the bilin-

ear case. 

Bilinear systems are the simplest class of nonlinear 

systems and can also be regarded as a practical starting 

point for the study of other nonlinear systems. However, 

only a few papers have focused on the stabilization problem 

of bilinear systems with time delay (Sun y col., 1992).  

An important issue associated with the bilinear system 

model is that of its stability. It is possible to find bounded 

input signals that can cause the output of almost all bilinear 

systems to be unbounded. This is probably the main reason 

why only very limited work on the theory of adaptive bilin-

ear filtering has been done. 

mailto:apatete@ula.ve
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Self-tuning control of linear systems has been studied 

since the seventies. Nevertheless, only a few papers are 

concerned with the self-tuning control of bilinear systems. 

An important contribution was given by (Goodwin y col., 

1984). They presented an explicit self-tuning controller for 

bilinear systems; however it lacked of a rigorous stability 

proof. 

The stability of implicit self-tuning control, based on 

generalized minimum variance criterion for minimum and a 

class of non-minimum phase linear systems, has been 

proved by the use of a Lyapunov function in (Patete y col., 

2008a; 2008b), and for those systems, it suffices to use line-

ar functions of the data to predict the system output re-

sponse. In general, it may be desirable, or even necessary, 

to consider the use of nonlinear functions to get good pre-

dictions and hence good control performance.  

Sun (Sun y col., 1992) gave a proof for the explicit 

self-tuning controller of bilinear systems. However, their 

proof relies on the strong condition of assuming parameters 

convergence in the closed-loop system, when the projection 

algorithm is used.  

Patete (Patete y col., 2008c; 2011) proved an algorithm 

which assured control stability and reference tracking for 

bilinear systems; however the algorithm works under the 

strong condition where the control variable must appears in 

a linear term and in the bilinear term of the bilinear system 

structure, reducing its real application to a small class of 

bilinear systems. 

Motivated by the fact that in practice, a lot of bilinear 

system structures have the control variable only in the bilin-

ear term, in this work, the class of bilinear systems consid-

ered in (Patete y col., 2008c; 2011) is enlarged by relaxing 

the strong condition on its structure. Also, in this paper, the 

stability of the implicit self-tuning controllers for the ex-

tended class of discrete-time bilinear systems, represented 

by the input-output relation with unknown parameters, is 

proved. The algorithm is based on the combination of the 

generalized minimum variance control and identification of 

control parameter recursively, although the parameters are 

not assured to converge to the actual values. Time delay is 

also taken into consideration. 

The paper is organized as follows: in section 2, the 

generalized minimum variance criterion for the extended 

class of bilinear systems is given. In section 3 the recursive 

self-tuning controller parameters estimation, based on the 

generalized minimum variance criterion, for the extended 

class of bilinear systems is studied and the main results are 

given by the theorem which assure closed-loop system sta-

bility. The case of study given is analyzed by simulation 

and is presented in section 4. Some remarks conclude the 

paper. 

 

2 Generalized minimum variance control for an extend-

ed class of bilinear systems 

Bilinear systems are a special class of nonlinear sys-

tems that are linear in input and linear in state but not joint-

ly linear in both state and input. Specifically, a time invari-

ant single-input and single-output (SISO) bilinear system 

has a discrete-time form as follows: 

1 1 1( ) ( ) ( ) ,d d

k k k kA z y z B z u z M z y u
 (1) 

where, 

1 1

1

1 1

0 1

1 1

0 1 0

( ) 1 ... ,

( ) ... ,

( ) ... , 0.

n

n

m

m

A z a z a z

B z b b z b z

M z m m z m z m
 

It is assumed that there are no common factors in  
1 1( ( ), ( ))A z M z , or in 1 1( ( ), ( ))A z B z  and the time de-

lay d   is known. z  denotes the time shift operator  
t

k k tz y y . In the Laplace transformation, 0sT
z e   

where 
0T  is the sampling period (for simplicity, and without 

loss of generality, 
0 1T  is assumed for mathematical equa-

tions’ derivation). In this section, to derive the nominal con-

trol law the polynomials 1 1( ), ( )A z B z  and 1( )M z  are 

assumed to be known.   

Remark 1: The extended class of bilinear systems to be 

considered in this paper is the class where the discrete-time 

system can be described as in (1), with polynomial 
1( ) 0A z , 0d , 1( ) 0M z , and the bilinearity is 

considered only between the output (measured state) and 

the input variable. Note that polynomial 1( )B z  could be 

equal to zero in this structure, which gives a more relaxed 

structure than the one given in (Patete y col., 2008c; 2011). 

If 1( ) 0M z , and 
0 0b , the described system in (1)  

is in a linear form and, for this case, the reader may be re-

ferred to (Patete y col., 2008c; 2011). 

 

The following notations are introduced: 

,

( ) ,

,

( ) .

t

k k t

t

k k k t k

t

k k k t k t

t t t t

k k k k k k

z u u

z u v u v

z u v u v

z z u v z z u v u v
 

It was proposed in (Patete y col., 2008c; 2011) an algo-

rithm that assured control stability and reference tracking 
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for the nominal system described in (1), if and only if poly-

nomial 1( )B z  in (1) is not zero, i.e. 1( ) 0B z . This is a 

strong condition on the bilinear system structure. A new al-

gorithm (where 1( )B z  no necessarily should be not zero) is 

considered and proved in this paper as follows, 

Algorithm 1: 

The control objective is to minimize the variance of the 

linear controlled sliding mode variable 
k ds , defined as: 

1 1( )( ) ( ) .k d k d k d ks C z y r Q z u
 (2) 

1 1 2

1 2( ) 1 ... ,n

nC z c z c z c z
 (3) 

1 1

0( ) (1 ),Q z q z
 (4) 

are to be designed, so that the specification written below 

should be satisfied. The error signal ke  was defined as: 

k k ke y r , where kr  is the reference signal. The idea is 

based on the discrete-time sliding mode control (Furuta, 

1990; 1993). The polynomial 1( )C z  is chosen Schur, and 

is designed by assigning all characteristic roots inside the 

unit disk of the z-plane. 

To derive the nominal control law, (1) is multiplied by 

1( )E z , then: 

1 1

1 1 1 1

( ) ( )

( ) ( ) ( ) ( ) .

k

d d

k k k

E z A z y

z E z B z u z E z M z y u
 (5) 

Using the Diophantine equation: 

1 1 1 1( ) ( ) ( ) ( ),dC z A z E z z F z
 (6) 

where, 

1 1 1

0 1 1

1 1 1

0 1 1

( ) ... ,

( ) ... ,

d

d

n

n

E z e e z e z

F z f f z f z
 

(5) is rewritten as: 

1 1

1 1 1 1

( ) ( )

( ) ( ) ( ) ( ) ,

d

k k

d d

k k k

C z y z F z y

z E z B z u z E z M z y u
 (7) 

1

1 1 1 1 1

( )

( ) ( ) ( ) ( ) ( ) .

k d

k k k k

C z y

F z y E z B z u E z M z y u
 (8) 

Combining (8) and (2), the variable  k ds  is: 

1 1 1 1( ) ( ) ( ) ( ) ,

k d

k k k d k k

s

G z u F z y C z r H z y u
 (9) 

Where     
1 1 1 1( ) ( ) ( ) ( )G z E z B z Q z

        
and 

1 1 1( ) ( ) ( ).H z E z M z
 

Then, the generalized minimum variance control input 

required to vanish  k ds
 
 in (2) is given by: 

1 1

1 1

( ) ( )
.

( ) ( )

k k d
k

k

F z y C z r
u

G z H z y
 (10) 

Remark 2: Note that in this algorithm, the proposed 

sliding mode surface is linear and gives a nonlinear control 

law, which is a different algorithm from the one proposed in 

(Patete y col., 2008c; 2011) where the sliding mode control, 

k ds , was given nonlinear and the resultant control law,  

ku , was linear. 

Remark 3: Polynomial 1( )Q z  must be designed as in 

(4) for the reference tracking to be assured (Patete y col., 

2008a). 

The fact that polynomial 1( )B z  may be equal to zero 

enlarge the class of bilinear systems to work with. Several 

systems may be modeled by a bilinear equation where the 

control variable only appears in the bilinear term. 

2.1 Quasi-sliding regimes for the extended class of con-

trolled bilinear systems 

Consider a smooth single-input single-output discrete-

time nonlinear system of the form: 

1 ( , ),k k kx x u
 

( ),k ky x
 (12) 

where kx  is the state vector. The level set, 

1(0) : : (0) 0 ,x X
 (13) 
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where X  contains all x , defines the sliding manifold 

which is assumed to be sufficiently smooth (Sira-Ramirez, 

1991). 

Definition 1: The controlled system (11) and (12) is said to 

exhibit a quasi-sliding motion locally whenever (Sarpturk y 

col., 1987) 

( ) 0.k k d ky y y
 (14) 

Definition 1 represents the discrete-time counterpart of 

the continuous-time sliding mode condition,  ( ) ( ) 0y t y t  

and it is also trivially equivalent to have 2

k k d ky y y  (Fu-

ruta, 1993). Based on Definition 1, the quasi-sliding mode 

existence for the controlled system in (1) is stated in the fol-

lowing Lemma. 

Lemma 1: The controlled discrete-time bilinear system 

(1), is said to exhibit a quasi-sliding motion locally when-

ever 

( ) 0.k k d ks s s
 (15) 

Proof: Using (1), (6) and (2), equation (9) is obtained. 

Substituting (9) in (15): 

1 1 1

1

[ ( ) ( ) ( )

( ) ] 0.

k k k k d

k k k

s G z u F z y C z r

H z y u s
 (16) 

Substituting (10) in (16), it is obtained: 

( ) 0,k ks s
 (17) 

2 0.ks  □   (18) 

3 Self-tuning control for the extended class of bilinear 

systems 

In this section, the system in (1) is considered as a sys-

tem with the same structure having parametric uncertainties. 

The overall stability of the self-tuning control based on gen-

eralized minimum variance criterion for SISO linear sys-

tems has been proved in (Patete 2008a), when the system 

constant parameters are not accurately known by recursive 

estimation of the controller parameter 1( )F z  and 1( )G z , 

i.e. 1ˆ ( )F z  and  
1ˆ ( )G z  are estimates of  1( )F z  and  

1( )G z , under the following assumptions, 

 

Assumptions 1: 

1) The order of the system (1) is known. 

2) The time delay, d , is known. 

3) Polynomial 1( )C z   is Schur. 

4) The considered system (1) with parametric uncer-

tainties is in the class of systems which can be stabilized by 

the polynomials 1( )Q z  and 
1( )C z  designed for the nom-

inal system model. 

5) The reference signal kr  is bounded, i.e. 
kr  for 

all k , where  is a positive constant. 

 

In this section, the closed-loop stability of self-tuning 

control for the extended class of bilinear systems, based on 

generalized minimum variance criterion, is given by the fol-

lowing recursive estimation equations: 

 

In this section, the closed-loop stability of self-tuning 

control for the extended class of bilinear systems, based on 

generalized minimum variance criterion, is given by the fol-

lowing recursive estimation equations: 

11
1 1

1

ˆ

ˆ ˆ[ ( ) ]
1

k

Tk k d
k k k k d kT

k d k k d

s C z r

 (19) 

And 

1 1
1

1

,
1

T

k k d k d k
k k T

k d k k d  (20) 

Where 

1 1

1 1 ( 1) ( 1)

[ ,..., , ,..., ,...,

, ,..., ]

T

k k k n k k m d

k k k k k d k d

y y u u

y u y u y u
 (21) 

is the vector containing measured output and control signal 

data, 

0 1 0 1 0 1 ( 1)[ ,..., , ,..., ,..., , ,..., ]T

n m d df f g g h h h
 (22) 

is the vector containing the controller parameters, and 

0 1 0 1 0 1 ( 1)
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ,..., , ,..., ,..., , ,..., ]T

n m d df f g g h h h
(23) 

is the estimate of . 

The controller uses identified parameters as follows: 

1 1

1 1

ˆ ( ) ( )
,

ˆ ˆ( ) ( )

k k d
k

k

F z y C z r
u

G z H z y
 (24) 
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where 1ˆ ( )F z , 1ˆ ( )G z , and 1ˆ ( )H z  are the estimated of 

1( )F z , 1( )G z  and , 1( )H z respectively. 

Theorem 1: Given a positive definite matrix 
0
 and 

the initial parameters vector 
0
ˆ , if the estimate ˆ

k
 of the 

controller (24) satisfies the recursive equations (19) and 

(20), under the set of Assumptions 1, then the close-loop 

system, combined by the self-tuning controller (24), (19) 

and (20) for the bilinear system (1) with parametric uncer-

tainties is stable. 

Proof: k ds  is written as: 

1 1 1ˆ ˆ( ) ( ) ( ) T

k d k k k d k k ds G z u F z y C z r
 (25) 

where  ˆ .k k
 

Using the control law (24), (25) is rewritten as: 

.T

k d k k ds
 (26) 

Consider the candidate Lyapunov function: 

2 11 1
.

2 2

T

k k k k kV s
 (27) 

The time difference of (27) is: 

1,k k kV V V
 (28) 

2 2 1 1

1 1 1 1

1 1 1 1
,

2 2 2 2

T T

k k k k k k k k kV s s
 (29) 

1

1 1 1

1 1 2 2 1

1 1 1 1

1

2

1 1 1
,

2 2 2

T

k k k k k k

T T

k k k k k k k k k

V

s s
(30) 

1

1 1 1

2 2 2 1

1 1 1

1 1 1

1 1 1

1

2

1 1

2 2

1
.

2

T

k k k k k k

T

k k k k k k

T T

k k k k k k k

V

s s s

 (31) 

From (26), ks  is: 

2 .T T

k k k d k d ks
 (32) 

Substituting (32) into (31), the following relation is de-

rived 

1

1 1 1

2 1 1

1 1

1

1 1 1

1

2

1 1

2 2

.

T

k k k k k k

T T

k k k k k d k d k

T T

k k k k k k d k d k

V

s

 (33) 

The term: 

1 1

1

1

2

T T

k k k k d k d k

 

in (33) can be made equal to zero as follows: 

1 1

1 0,T

k k k d k d  (34) 

1
1

1 ,T

k k k d k d
 (35) 

1

1 1 1 ,T T

k k k k d k d k k d k d
 (36) 

that yields (20) by the matrix inversion lemma. 

The term: 

1

1 1 1

T T

k k k k k k d k d k
 

in (33) also can be made equal to zero as described below: 

1 1 0,T

k k k k d k d k  (37) 

1 1,
T

k k k d k d k k  (38) 

1

1 1 1 1,

T

k k d k d k

T T

k k d k d k k k d k d k

I

I
 (39) 

1 1

1

1

ˆ

.
1

T

k k d k d k

k k T

k d k k d  (40) 
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From (9): 

1( ) ,T

k k d ks C z r
 (41) 

thus (19) is derived. 

Using the recursive equations (19) and (20) in (33), for 

1k , the following relation is obtained: 

2 1

1 0 0 1 0 0 1 0

1 1
.

2 2

T

V V s
 (42) 

Initially 
1 0 0 , then 

1 0 0V V  which gives 

that 
1 0V V . For 2k , 

2 1

2 1 2 1 1 2 1 1 0

1 1
.

2 2

T

V s V V
 (43) 

For 3k , 

2 1

3 2 3 2 2 3 2 2

1 1
,

2 2

T

V s V
 (44) 

using (43) and (44), the following is obtained: 

2 2 1

3 2 1 3 2 2 3 2

1

2 1 1 2 1 1 0

1 1 1

2 2 2

1
.

2

T

T

V s s

V V
 (45) 

Then, for k N , where N  is large, the following re-

lation is derived: 

2 1

1 1 1 1

2

1 0

1
[ ]

2

,

N T

N k k k k k k

k

V s

V V
 (46) 

2 1

1 1 1 1

2

0

1
[ ]

2

.

N T

N k k k k k k

k

V s

V
 (47) 

For any ( 2)k N k , inequality (47) holds. Equa-

tion (47) implies that 
Ns  and 

1
ˆ ˆ
N N

 vanish as N   ap-

proaches infinity, thus 
kV  is negative semi-definite for all 

k  and the generalized minimum variance is minimized, 

which proves the overall system stability. 

As a result from the above proof, T

k
 is bounded. This 

means that: 

1 1

1 1

( 1) ( 1)

, ,..., ,

, ,..., ,

,...,

k k k n

k k k m d

k k k d k d

y y y

u u u

y u y u
 

are bounded for all k . Furthermore as k , 0ks   

and 
1 0k k

, which means that ˆ
k

 goes to a con-

stant value. 

The actual value 
ky  is shown to be bounded as fol-

lows: 

Multiplying (2) by 1( )B z , 

1 1 1

1 1 1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ,

k d k d

k d k

B z s B z C z y

B z C z r B z Q z u
 (48) 

1 1 1

1 1 1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ,

k k

d

k k

B z s B z C z y

B z C z r z B z Q z u
 (49) 

and using (1): 

1 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

k k k

d

k k k

B z s B z C z y B z C z r

A z Q z y z Q z M z y u
 (50) 

1 1 1

1 1

1 1

1

( ) ( ) ( )

( ) ( )

( ) ( )
,

( )

k k k

k d k d

B z B z C z
y s r

T z T z

Q z M z
y u

T z
 (51) 

where 1( )T z  is defined as: 

1 1 1 1 1( ) ( ) ( ) ( ) ( ).T z C z B z A z Q z
 (52) 

The signal ks  was proved to go to zero as k . 

The signal kr  is assumed to be bounded for all k  and the 

signal 
k d k dy u  was proved to be bounded from the 

boundeness of vector T

k
. From the set of Assumptions 1, 

number 4 means that the closed-loop characteristic polyno-

mial, considering the described plant with parametric uncer-

tainties, in (1), 1( )T z , is Schur. Thus, 
ky  in closed-loop is 
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proved to be bounded. Furthermore, the error 
k k ke y r  is 

bounded. 

4 Case of study: nuclear fission model 

When a fertile nucleus undergoes fission, an average of 

two or three neutrons are emitted together with nuclear ra-

diation and a relatively large amount of energy. The energy 

causes rapid motion of fission fragments, which produces 

heat. The dynamic model follows that of (Mohler, 1991). 

The net change in neutron population over one genera-

tion by neutron conservation is 

( ) ( )
( ) ,

dn t n t
K l

dt l  (53) 

where K , the average number of first-generation offspring 

per neutron death, is called the multiplication constant, l  is 

the mean prompt neutron generation time; and all neutrons 

are produced in t  time t l . Here l  may be a millisecond 

for thermal reactors, or might be a microsecond for fast re-

actors. This model assumes that all neutrons are produced 

promptly. It is common knowledge, however, that a small 

portion of neutrons are derived from unstable fission prod-

ucts. 

Equation (53) for prompt neutrons may be modified to 

account for delayed neutrons merely by subtracting 
K n

l
, 

and for a neutron source rate , by adding . Then the ad-

ditional delayed neutrons emitted by the six precursors 

cause the rate of neutron change to be 

6

1

( ) (1 ) 1
( ) ( ) ,i i

i

dn t K
n t c t

dt l
 (54) 

where 
i
 is the decay constant for the i th group of precur-

sors and 
ic  is the population of the i th precursors group. It 

is assumed that delayed neutrons have the same effect on 

the process as that of prompt fission neutrons. Here source 

 is usually a relatively small constant. 

The rate of precursor population change equals birth 

rate minus death rate: 

( ) ( )
( ) ( ),

1,2,...,6,

i i i
i i

dc t dc t K
n t c t

dt dt l

i  (55) 

where 
i
 is the portion of neutrons generated from the i th 

precursor.  

The total neutrons population is a constant value 
1n  if: 

6

1

( )
1,

( )

i

i i

c t
K l

n t
  

and 0.  At this delayed critical condition, the neutron 

kinetics, (54) and (55), are in an equilibrium state, 
1( )n t n  

and 
1( ) ( ), ( 1,2,...,6),i ic t c t i  if 1K  and   

1( ) .i

i

c t n
l

 

Ordinarily, around the design level the system is oper-

ated near delayed critical with k  approximately 1 and s  

negligible. Then the kinetics is approximated by: 

6

1

( )
( ) ( ),i i

i

dn t k
n t c t

dt l
 

( )
( ) ( ), 1,2,...,6,i i

i i

dc t
n t c t i

dt l  

where the reactivity decay K  is 1K .  

Frequently, the neutron kinetics is accurately approxi-

mated by a single-precursor model of the form: 

( )
( ) ( ),

dn t K
n t c t

dt l  

( )
( ) ( )

dc t
n t c t

dt l  

where  is an average decay constant for an average pre-

cursor of population  .  

Control of this fission process is affected by means of 

reactivity k  or multiplication K ; either may be utilized as 

a control variable, depending on which equation is used. 

With the control signal defined as ( )u t K , the neutron 

fission process is a bilinear system. Then, the model is giv-

en by: 

( ) ( )
( ) ( ),

dn t u t
n t c t

dt l  (56) 

( )
( ) ( ),

dc t
n t c t

dt l  (57) 

where the output variable is ( ) ( )y t n t .  

In order to use the proposed self-tuning controller, the 

equations (56) and (57) are discretized using the first order 
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Euler approximation. Then, the dicretized system structure 

is given by: 

0 0 0

1 2 1 1

1 2 0 1(1 ) ( ) ,kT kT kTa z a z y z m m z y u
 (58) 

Where: 

1 0 0 2 0 0

2

0 0 0
0 1

2, 1 ,

, .

a T T a T T
l l

T T T
m m

l l l   

The sampling time 
0T   is chosen as 0.001s. The pa-

rameter    is a parameter that may change, 

0.1 0.05 , depending if the power is increasing, de-

creasing or the system is in steady state. 

To compute the nominal controller, 0.077 s-1 is 

assumed, the parameter l  is chosen as 57 10l s, and the 

constants  is 0.0065 .  

Then, the nominal controller is designed as follows: 

Polynomials 1( )C z  and 
1( )Q z   are chosen as: 

1 1 2 3( ) 1 0.25 0.3 0.2 ,C z z z z
 (59) 

1 1( ) 0.02(1 ).Q z z
 (60) 

Using the information in (58), (59), (60) and solving 

the Diophantine equation (6), following the algorithm pro-

posed in (Ogata, 1995), then the polynomials for the nomi-

nal control law (10) are obtained as: 

1 1

1 1

1 1

1 1 2

( ) 1 0.220491 ,

( ) 1.93657 0.186575 ,

( ) ( ),

( ) 14.2857 11.1347 3.14963 .

E z z

F z z

G z Q z

H z z z  (61) 

Polynomials 1( )F z , 
1( )G z  and 

1( )H z  give the 

initials values for 
1ˆ ( )F z , 

1ˆ ( )G z , and  
1ˆ ( )H z , respec-

tively, in (24). The variables initial conditions are: (0) 0n  

and (0) 2c . The reference signal is set to cero, because 

the goal is to vanish the delayed neutrons after the nuclear 

fission occurs. Fig. 1 shows the output response of the sys-

tem (58), using the proposed self-tuning algorithm ((24), 

(19) and (20)) and no parametric uncertainties is considered 

in this case ( 0.077 s-1). 

 

 
 

Fig. 1. Output response of system (58) using the proposed algorithm, no 

parametric uncertainties is considered in this case, 0.077 s-1. 

As shown through the simulations results, even though 

polynomial 1( )B z  is equal to zero, the overall stability and 

tracking reference are satisfied, which allows to deal with a 

longer class of bilinear systems. 

Consider now a system having parameter uncertainties 

in parameter ,  (to show the simulation results 0.09   

s
-1

  is considered), then (58) presents parametric uncertain-

ties. Simulation result for this case is shown in Fig. 2; Fig. 3 

and Fig. 4 shown the control dynamics 
0kTu  and the quasi-

sliding motion (15), respectively, for this case when 

0.09  s
-1

. It is shown that the proposed self-tuning algo-

rithm ((24), (19) and (20)) exhibits good performance and 

the reference is followed in steady state. 

5 Conclusions 

The extended class of bilinear systems considered in 

this work may have the bilinearity only between the output 

(measured state) and the input variable, which enlarge the 

class of bilinear system to deal with. The proposed self-

tuning approach enables controller parameters to be esti-

mated. The closed-loop stability of the implicit self-tuning 

control for the extended class of bilinear systems was 

proved. Control stability and reference tracking are shown 

to be assured. The given algorithm is based on the idea of 

the sliding mode control concept; because of this the exist-

ence of quasi-sliding regimes for the controlled discrete-

time bilinear system was also proved. The validity of the 

proposed algorithm was also demonstrated through a study 

case: nuclear fission model. As a future work, the proposed 

algorithm is to be applied to a real bilinear plant where the 

control signal appears only in the bilinear term. 
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Fig. 2. Output response of system (58), with parameter uncertainties, 

0.09  s-1. 

 
 

Fig. 3. Control law (24) of system (58) with parameter uncertainties, 

0.09 s-1. 

 
 

Fig. 4. Quasi-sliding motion (15) of system (58) with parameter uncertain-

ties, 0.09  s-1 
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