
Artículo de Investigación. Revista Ciencia e Ingeniería. Vol. 36, No. 2 pp. 73-84, abril-julio, 2015.
ISSN 1316-7081. ISSN Elect. 2244-8780 Universidad de los Andes (ULA)

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

Crónicas Distribuidas para el Reconocimiento de Fallas

Distributed Chronicles to Faults Recognition

Vizcarrondo Juan1*, Aguilar José2, Exposito Ernesto3 and Subias Audine4
1 Centro Nacional de Desarrollo e Investigación en Tecnologías Libres (CENDITEL), Mérida – Venezuela

2 CEMISID, Dpto. de Computación, Facultad de Ingeniería, Universidad de Los Andes, Mérida – Venezuela
Investigador Prometeo, Universidad Técnica Particular de Loja, Loja, Ecuador

3 CNRS, LAAS, 7, avenue du Colonel Roche, F-31400, Univ de Toulouse, INSA, LAAS, F-31400, Toulouse - France
4 CNRS, LAAS, 7, avenue du Colonel Roche, F-31400, Univ de Toulouse, INSA, LAAS, F-31400, Toulouse - France

*jvizcarrondo@cenditel.gob.ve

Resumen

El paradigma de crónicas ha sido utilizado para determinar fallas en sistemas dinámicos, permitiendo modelar las relacio-
nes temporales entre eventos observables y describir los patrones de comportamiento del sistema. Los mecanismos utiliza-
dos hasta ahora suelen utilizar métodos semi-centralizados, que consisten en un componente central, que es responsable de
hacer la inferencia final sobre el diagnóstico de fallos del sistema, basado en la información obtenida de los diagnósticos
locales. Este modelo tiene problemas cuando se implementa para el monitoreo de sistemas muy grandes. En este trabajo se
propone un sistema de diagnóstico de fallos basado en crónicas distribuidas.

Palabras clave: Reconocimiento patrones distribuidos, reconocimiento patrones temporales, crónicas, diagnóstico distri-
buido de faltas, composición de servicios web tolerantes a fallas.

Abstract

The chronicles paradigm has been used to determine fault in dynamic systems, allow modeling the temporal relationships
between observable events and enabling to describe the patterns of behavior of the system. The mechanisms used until now
usually use semi-centralized approaches, which consist of a central component that is responsible for making the final infe-
rence about the fault diagnosis of the system, based on the information collected from local diagnosers. Hence this model is
not suited for monitoring very large systems. We propose in this article a fully distributed approach. This distributed chro-
nicle recognition is illustrated in the context of e-commerce with a Service Oriented Application implementation

Key words: Distributed pattern recognition, temporal patterns recognition, chronicles, distributed fault diagnostic, web ser-
vice composition fault tolerance.

1 Introducción

In general, fault diagnosis mechanisms require forma-
lisms for recognizing fault situations. One of the formalism
is the chronicles, which allow modeling the temporal rela-
tionships between observable events in a system, enabling
to describe the patterns of behavior of the system. Dousson
showed in earlier work on chronicles as a set of patterns,
each characterized by observable events and temporal cons-
traints among themselves and with respect to the context,
representing an interpretation of what is happening in the
dynamics of the system under study at a given time (Gue-
rraz y col., 2004). Thus, each chronicle represents a situa-
tion or scenario of normal or abnormal performance of the
system.

The chronicles have been used in different scenarios
(Le Guillou y col., 2008), but especially in the analysis of
alarms in the supervision for telecommunication network,
intrusion detection, voltage distribution network and web
services composition. Typically, diagnosis is performed by
a central diagnoser responsible for analyzing the set of
events generated of the all that are part of the system, when
the size of the system increases the problem becomes un-
manageable to increase dramatically the frequency of events
and the computational complexity of inference.

In previous work, we proposed a distributed architectu-
re for fault diagnosis in service composition, in which the
fault diagnosis is performed through the interaction of diag-
nosers present in each service (Vizcarrondo y col., 2012).
To complete this architecture, this paper proposes an exten-
sion to the formalism of chronicles, as mechanisms for mo-

mailto:jvizcarrondo@cenditel.gob.ve

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

74

deling distributed failure patterns. Chronicles are decompo-
sed into sub-chronicles linked by special events. Moreover,
the architecture will be a mechanism for chronicles recogni-
tion fully distributed.

This paper is organized as follows, first we present the
previous works in the area, second we present our distribu-
ted architecture for fault diagnosis proposed in (Vizcarron-
do y col., 2012). Then we present our extensions to the for-
malism of chronicles, culminating with an example of use
in service-oriented applications.

2 Related Works

In the fault diagnosis of dynamic systems, some stu-
dies have used the formalism of chronicles to determine the
faults present in the system (Cordier y col., 2000, Cordier y
col., 2007, Quiniou y col., 2001, WS-Diamond 2008),
commonly using a centralized or global diagnoser. On the
other hand, there is not studies about distributed scheme of
fault diagnosis using chronicles. Additionally, (Guerraz y
col., 2004) studied the chronicles using petri nets, enriching
the chronicles with pre and post information about events
condition. Also, (Mhalla y col., 2010) propose another me-
chanism for distributed failure diagnosis using chronicles,
for which the chronicles are decomposed into many sub-
chronicles as components are in the system, and observa-
tions are communicated between diagnosers, to thereby ob-
tain the necessary information that is not available locally.

Furthermore, (Aghasaryan y col., 1998, Grosclaude,
2004) construct patterns used by the diagnostician like a
puzzle, allowing the distribution of the input events in the
paths followed by the components for identifying occurren-
ces of faults. All transitions are transformed as pieces des-
cribing the partial state transition when are instantiated (tur-
ning on the pre and post conditions of the events), allowing
to track the occurrence of set of event for the recognition of
faults. Both approaches are based on the prediction of mis-
sing events using stochastic Petri nets.

Another chronicle approach used in service composi-
tion is presented in (WS-Diamond, 2008). This architecture
is based on a decentralized diagnosis, where local diagno-
sers working with a global coordinator, reporting events
(called brokering events) from all local diagnosers, using
colored distributed chronicle, to global diagnoser, for the
recognition of the global chronicle. (Cordier y col., 2007)
adapt the chronicle-based approach to a distributed context.
For that, they propose a decentralized architecture and an
algorithm which is in charge of synchronizing the local
diagnoses, and merging them into a global diagnosis. On the
other hand, (Boufaied y col., 2004) proposes a distributed
check constraints using local and global events, which is
enhanced by introducing delay between the communica-
tions present in the different diagnosers. This architecture is
fully distributed, the global events are spread among diffe-
rent diagnosers. When a local diagnoser recognizes its local
chronicle, then propagates global events to the rest of the

local diagnosers for making the (complete chronicle) global
diagnosis.

 There is other set of works about distributed diag-
nostic for industrial processes (continuous systems). For
example, (Roychoudhury y col., 2009) propose an online,
distributed, model-based diagnosis scheme for isolating
abrupt faults in large continuous systems to overcome the
problems on the centralized diagnosis approaches (memory
and communication requirements, scale poorly, etc.). (Boel
y col., 2002) propose an algorithm for decentralized failure
diagnosis with asymmetric communication in which each
diagnoser sends only that subset of failure states which is
relevant for the other diagnosers. (Le Mortellec y col.,
2013) propose a holonic cooperative fault diagnosis ap-
proach, to increase the embedded diagnosis capabilities of
complex transportation systems. This concept is applied to
the fault diagnosis of door systems of a railway transporta-
tion system. Finally, (Nakata y col., 2013) propose an ap-
proach to detect faults, even if at most n−k local diagnosis
decisions are not available, by using the remaining diagno-
sis decisions.

Recently, in (Vizcarrondo y col., 2012) we proposed a
reflective middleware architecture for fault management in
service composition, in which each service is supervised by
a local diagnoser using chronicles. To complete the propo-
sal, this paper proposes the fault diagnosis system in web
service composition, based on a chronicle recognition me-
chanism fully distributed.

The main difference of our approach with previous
works is that we propose a fully distributed model of chro-
nicles, which can be used by distributed systems (like the
distributed diagnosers). The previous works based on chro-
nicles are decentralized approaches. Finally, the previous
works on distributed diagnoser approaches have not been
defined for distributed applications.

3 Chronicles

A chronicle is a set of events with time constraints
between them, which represents an interpretation of what is
happening in the dynamics of the system under study at a
given time (Dousson 2002). Each chronicle situation or sce-
nario represents a normal or abnormal performance of the
system, which can be seen as a pattern of behavior of the
system in this situation. It is composed of a group of obser-
vable events, temporarily restricted by time of occurrence.
A chronicle could generate new events and actions at the
time of recognition of their occurrence, which could be used
as inputs for other chronicles (is a process of inference bet-
ween chronicles (WS-Diamond 2008). Thus, in (Le Guillou
y col., 2008) defines a chronicle C as a "pair (E, T), where E
is the set of events and T a set of constraints between their
times of occurrence. When their variables and times of oc-
currence are instantiated, it is called an instance of the chro-
nicle".

An event in the chronicles defines what is observed in

Crónicas distribuidas para el reconocimiento de fallas 75

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

the system at a given instant of time, and can be described
in different ways (Le Guillou y col., 2008):

1. The name of the event/activity observed (act).
2. The name of the event/activity enriched by the fact that

the activity is beginning (act-) or ending (act+).
3. The name of the activity enriched with some parame-

ters (variables) that must be observed when
event/activity happens (event(?Var1, ...,?Varn)).

4. A combination of 2 and 3:

 act-(?Var1, ...,?Varn) "act is starting with the
 parameters ?Var1,. . .?varn ".
 act+(?Var1, ...,?Varn) "act is ending with the
 return values ?Var1,. . .?varn".

In the chronicles is necessary to define the pair (E,?T),

where E is the event name (as described in some of the
ways mentioned above) and T the time of occurrence of the
event. As has been said previously, an instantiated event is
an event in which variables and their time of occurrence ha-
ve been instantiated.

A tool for chronicles recognizing, called CRS (Chroni-
cle Recognition System), has been developed by Dousson
(Dousson y col.,., 1993, Dousson 2002). It is responsible for
analyzing the flow of events and recognizing, in real time,
any pattern matching with a situation described by a chroni-
cle. When a new event is logged in the system, new instan-
ces of chronicles are generated in the set of hypotheses.

The implementation of chronicles using centralized
mechanisms in systems containing a large number of com-
ponents, it is costly in terms of design and computational
resources, therefore, the use of distributed recognition me-
chanisms is suitable to achieve the diagnosis of failures in
these systems. In the next section, we present our extension
of paradigm of Chronicles to address the distribution as-
pects.

Reified temporal logic formalism represents an effi-
cient approach to enter the time with the logic, to reach a
precise analysis and logical formulation of humans temporal
activity. This formalism can be used on the representation
of chronicles, allowing propositional terms with temporal
objects (reifying predicates).

A temporal proposition is represented as a tuple A(a1,
..., an): V, where A is an attribute name, a1, ..., an are its
arguments, and V are the values of the arguments.

The Reifying predicates used in chronicles are (Morin
y col., 2003):
• hold: represent persistence of the value of a atemporal

propositions over a time interval. hold A : (V), (t1, t2)).
• event: denote a change of the value of atemporal proposi-

tion. It has not duration and expresses a time stamped of a
pattern. event(A: (V), t).

• noevent: used to express the absence of events in a time
interval in a chronicle. noevent(A, (t1, t2)).

• occurs: times between the two time points t1 and t2 . The
value ∞ can be used for n2. occurs((n1, n2), P, (t1, t2)),

where (0 ≤ n1 ≤ n2).
• Thus, the representation of a chronicle is carried out by

specifying (Morin y col., 2003):
• A set of time points.
• A set of constraints between time points.
• A set of atemporal propositions representing activities that

occur in the chronicle.
• A set of Reifying predicates representing the context of

the occurrences of atemporal propositions.
• A set of external actions to execute when the chronicle is

recognized.

Then chronicle model can be written as:
Chronicle Model {
 Events{
 event(e1, T1), event(e2, T2), event(e3, T3) }
 Constraints{
 T2-T1 < C1
 T3-T2 < C2 }
 When recognized{
 action1
 action2 } }
Where:

• ei (∀ i=1, …, 3) represents the set of atemporal proposi-
tions representing activities (events) in the chronicle.

• Ti is the time points of occurrence of the events.
• Constrains: They are the set of constraints between Ti.
• Ci are constants representing the difference among the ti-

me points of occurrence of two events.
• Actions: are the set of actions to execute when the chroni-

cle is recognized.

4 Our extension to the paradigm of Chronicles: Distri-
buted Chronicles

4.1 Definition of distributed chronicles

To begin to define our extension, it is essential to clari-
fy that the detection of distributed chronicles is carried out
by detecting a set of events E={E1, …, E2,, Ep}, distri-
buted among the different n processes of the system
(Boufaied y col., 2004). In general, such events can be
grouped into n sub-chronicles distributed. The recognition
of the n sub-chronicles results in the recognition of a full
chronicle. So, we can say that:

Definition 1: "A chronicle can be decomposed into n-
sub-chronicles, in which each sub-chronicle SCi is assigned
to a site/component Pi of the system under study, and des-
cribes a sub-set of events Eaci, with Taci temporal restric-
tions, that must occur in that site i in order to occur the
chronicle recognition".

C(E,T) = UNIONi=1, n(SCi(Eaci, Taci)) (1)
where,

• Eaci and Taci correspond to a set of events and temporal
restrictions of the chronicle assigned to each component i,
where Eaci ={Ek,,..., El}, Taci ={Tk,,..., Tl} and Ek, …, El
єE, Tk , …, Tl єT and these events Ek, …, El occurs in si-

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

76

te i}.
• UNION is a predicate defined by the union of set of

events (Eaci) and of set of temporal constraints
(Taci) distributed in the n sub-chronicles.

To prove this definition, suppose:

C(E,T) = UNIONj=1,p(Ej,Tj) (2)

C(E,T) = {(E1, T1), (E2,T2)(Ep, Tp))} (3)

Now, suppose that we distribute these p events among

n components, such that p ≥ n:

C(E,T) = {(Eac1, Tac1), (Eac2, Tac2) ... (Eacn, Tacn)} (4)

Then, we can say that:

C(E, T) = {SC1(Eac1, Tac1), SC2(Eac2, Taci2), …,
SCn(Eacn, Tacn)} = UNIONi=1, n(SCi(Eaci, Taci)) (5)

Definition 2: because a chronicle C can be decompo-
sed into n sub-chronicles (SC), the recognition of the global
chronicle can be carried out in a sub-chronicle SCi, recog-
nizing its events (Eaci, Taci) with the union of the partial
recognition of the other sub-chronicles (SCj ∀ j=1,n | j≠i) of
the other events (in this case, the other sub-chronicles must
send it a message to inform it the recognition of their
events). In this way the sub-chronicle SCi recognition the
chronicle C(E, T):

C(E, T) = {(Eaci, Taci), UNIONj=1, n | j ≠ i(SCj(Eacj, Tacj))}(6)

To prove equation (6), Chronicle can be decomposed into n
SCs (equation 1):

C(E, T) = {SC1(Eac1, Tac1), SC2(Eac2, Tac2), …,
SCn(Eacn, Tacn)} (7)

due to the recognition of the chronicle C is carried out
in site i, that is equivalent to:

C(E, T) = {SCi(Eaci, Taci), UNIONj=1, n | j ≠ i(SCj(Eacj,
Tacj))} (8)

Particularly, because a chronicle is decomposed into n

sub-chronicles, it is necessary to extend the representation
of sub-chronicles to correlate the events recognized between
different sub-chronicles, leading then to the recognition of

the global chronicle. For this, we extend the formalism of
chronicles to manage the synchronization process between
the sub-chronicle as follows (see Figure 1, internal events
are own events in sub-chronicle).

Definition 3 Variables State: shows if the value of a
variable of an event in the chronicle is normal (¬Err) or ab-
normal (Err). Usually, we can denote it using a Boolean va-
lue (0 and 1), but the abnormal state may expand to enrich
the classification of this behavior.

Fig. 1. Example of chronicle decomposed sub-chronicles

Definition 4 Binding Events (BE): Are events from
sub-chronicles, to connect them to other sub-chronicles, and
thus to represent the communication between sub-
chronicles. A binding event BEj is instanced when a
neighbor sub-chronicle is recognized and then is propagated
to the other sub-chronicles. Thus, the recognition (output
event) of a sub-chronicle SCi can be linked to the BEj
events belonging to a sub-chronicle SCj

Definition 5: we define a Distributed Chronicle as "a
chronicle C decomposed into a set of sub-chronicles SCi,
which are linked together via Binding Events"

Proof 5: To prove this claim, suppose the chronicle in
Figure 1, this chronicle is decomposed in 3 sub-chronicles:

SC1 = {(E1, T1), (E2, T2), (E10, T10), (E11, T11)}
SC2 = {(E3, T3), (E4, T4), (BEsc3, Tsc3), (E5, T5), (BEsc1, Tsc1),

(E9, T9)}
SC3 = {(E6, T6), (E7, T7), (E8, T8)}

SC1 and SC3 are sub-chronicles with only internal
events. When SC1 and SC3 are recognized then they emit
binding events (BEsc3 in time Tsc3, and BEsc1 in time Tsc1) to
SC2. Finally, SC2 can recognize the global chronicle:
SC2 = {(E3, T3), (E4, T4), (BEsc3, Tsc3), (E5, T5), (BEsc1, Tsc1), (E9,
T9)}
SC2 = {(E3, T3), (E4, T4), {(E6, T6), (E7, T7), (E8, T8)}, (E5, T5),
{(E1, T1), (E2, T2), (E10, T10), (E11, T11)}, (E9, T9)}
SC2(Eac2, Tac2), UNIONj=1, 3 | j ≠ 2(SCj(Eacj, Tacj)) = C(E,T)

Crónicas distribuidas para el reconocimiento de fallas 77

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

4.2 Distributed Chronicles Recognition

To design a fully distributed chronicle recognition, a
recognition system is placed in each component of the sys-
tem, This local recognition system is in charge to recognize
the sub-chronicle associated to the component (i.e. site). As
mentioned above, each sub-chronicle is linked to other
events through binding events, which will allow to the local
recognition system to infer information from its neighboring
components. Using this information, the recognition system
can recognize local sub-chronicles, generate events to
neighboring sites, and in general, spread the inferred. The
inclusion of binding events allows each site to have a global
vision of the entire system.

For the chronicle example of Figure 1, the architecture
of each site is shown in Figure 2, and consists of a local
chronicle recognition module (called CRS), which receives
events from the local monitor, and events generated by ot-
her neighboring sites (BE). For example, we see in Figure 2
as the site 2, in a given time, receives events from the moni-
tor 2, and those generated by the sub-chronicles at sites 3
(BE3) and 1 (BE1). Then Chronicle Model of the Figure 2
can be written as shown on Figure 3.

4.2.1 Local chronicle recognition module algorithm

The local CRS performs diagnosis; the algorithm to
make this is shown below:
1. FOREACH event received DO
2. diagnoser.addEvents(chronicle C, event)
3. IF chronicle C is recognized THEN

3.1 DO C.executeAction()

Algorithm 1: local CRS

Fig. 2. distributed CRS

To illustrate the operation of the algorithm, we are
going to describe every step using the chronicle model in
the component 3 of the figure 3 using C9 = 1, C10 = 3, C11
= 1 and C12 = 3:

1 The events are represented by the name of the acti-
vity and time of event occurrence. Thus, a diagnoser will
getting a stream of events that are induced by the evolution
of the component or are generated by other diagnoser, to
make the recognition of a chronicle. To illustrate this point
let us suppose that diagnoser 3 receives the sequence of
events:

{event(E6,T6=2), event(E6, T6=3), event(E7, T7=6),
event(E7, T7=7), event(E8, E8=8)}

Chronicle Subchroni-

cle 1 {
 Events{

 event(E1, T1),
event(E2, T2),

event(E10, T10),
event(E11, T11) }

 Constraints{
 T2-T1 ≤ C1
 T10-T2 ≤ C2

 T11-T10 ≤ C3 }
 When recognized{

 Emit
event(BESC1,TSC1) to

Diagnoser 2 }}

Chronicle Subchroni-
cle 2 {

 Events{
 event(E3, T3),

event(E4, T4),
event(E5, T5),

event(BESC3, TSC3),
event(E9, T9),

event(BESC1, TSC1) }
 Constraints{
 T4-T3 ≤ C4
 T5-T4 ≤ C5

 TSC3-T5 ≤ C6
 TSC1-T9 ≤ C8 }

 When recognized{
 Create log(Fault 1)

}}

Chronicle Subchroni-
cle 3 {

 Events{
 event(E6,

T6),event(E7, T7),
event(E8, T8) }
 Constraints{
 T7-T6 ≥ C9
 T7-T6 ≤ C10
 T8-T7 ≥ C11

 T8-T7 ≤ C12 }
 When recognized{

 Emit
event(ESC3,TSC3) to

Diagnoser 2 }}

Fig. 3. Chronicle Model

2 To illustrate the process of adding a new event to

the instances of the chronicles, we detail this step in Algo-
rithm 2:

 diagnoser.addEvents (chronicle C, event)

1 FOR EACH chronicle C where event is the first event DO
1.1 instances = C.instances();
2 FOR EACH current instances DO
2.1 IF event matches instances and temporal constraints are
not violated THEN
2.1.1 instances.addEvent(event)
2.2 IF event match instances and temporal constraints are
violated THEN
2.2.1 instances.discard()
2.3 IF temporal constraints are violated THEN
2.3.1 instances.discard()

Algorithm 2: Procedure diagnoser.addEvents

At the time of arrival of an event, are created many ins-

tances of chronicles as different possibilities exist (this
event is the first one of these chronicles, see step 2.1). Addi-
tionally, it is necessary to check all the current chronicles
instanced (step 2.2) in order to determine if some of them
can continue to be instanced (they wait for this event, see

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

78

step 2.2.1) or in some of them the temporary constraints are
violated (step 2.2.2). For this last case, these instances must
be deleted. Of course, an instance could not be affected be-
cause the new event is not part of the chronicle model. Ad-
ditionally, the chronicle instances can be discarded when no
new events occur and the time constraints are violated (see
step 2.3.1).

This behavior of the algorithm is shown in Figure 4 for
the CRS of the diagnoser 3. Initially the set of hypotheses is
empty i.e. there are no (partial) chronicle instance and arri-
ves E6 event in the diagnoser at time T6 = 2; an instance
I31 of the chronicle model is created waiting for the E7
event in the interval [3, 5]. Then arrives another event E6 at
time T6 = 3 and a new instance is created I32 awaiting the
event E7 in the range [4, 6]. At the time t = 5, I31 instance
has a temporal constraint violation because the event E7 has
not happen and then the I31 instance is discarded. At time t
= 6 occurs the event E7 and Chronicle instance I32 is modi-
fied waiting the event E8 in the interval [7, 9]. E7 event
arrives at time T7 = 7 but there are not instances did not oc-
curred. Finally, E8 occurs and the instance of chronicle I32
is recognized.

3 The recognition of a chronicle is when for a stream
of observable events, the full pattern of the chronicle model
is reached. That is, for each instance of a chronicle in the
CRS, this step must verify if the current event is the last
event awaited. In this case, this instance becomes in a re-
cognition of the chronicle. For the previous example, we
observe in Figure 4 how subchronicle 3 is recognized in the
I32 instance and it is not recognized in instance I31 (this
instance is discarded):

I31 = {E6(T6=2)}

I32 = {E6(T6=3), E7(E7=6), E8(T8=8)}

Fig. 4 Sub-chronicles 3 instanced

4 The recognition of chronicles is performed to iden-
tify undesirable behaviors in systems, so that the chronicle
recognition induces the execution of a set of actions. These
actions are not limited to the generation of data reports, but
they may consist of corrective actions or generation of new
events that could be used by other diagnosers. In our exam-

ple, the chronicle model contains one action to be executed
at the time of recognition:

Emit event(eSC3, Diagnoser 2)
That is, when SC3 chronicle is recognized one event

eSC3 is generated and sent to Diagnoser 2.

5 Case Study

In order to illustrate our proposal, we will use a com-
mon example of e-commerce SOA application1 (see Figure
5), which comprises three business processes (which will
constitute our services):
• Shop: the shop where users purchase products.
• Supplier offers products to the store, it needs to check

their availability before making a response to the store.
• Warehouse: where the products are stored in the pro-

viders. This process has a service level agreement
(SLA)2 with Supplier, which is that at least one product
from the list should be returned3. It can invoke to other
warehouse of the company to search products. This
property allows to answer at least one product when the
required amount is not in the local warehouse.
Now, we describe a classical behavior of this applica-

tion:
(1) SuppListOut: Shop provides the list of products re-

quired to the supplier.
(2) SuppItemIn: Supplier checks its deposit invoking the

Warehouse process.
(3) SuppItemOut: Warehouse provides the answer about

the list of products in the deposit to the Supplier, which
must contain at least one product (SLA restriction).

SuppListIn: The Supplier notifies the Shop which
products can provide.

Fig. 5 e-commerce example

5.1 Design of Chronicles

Let us now characterize the distribution of events
among different diagnosers (sites) that are part of the com-
position, With this generic chronicle we can derive each
specific chronicle to detect abnormal situation. Additiona-
lly, for practical reasons we consider that the time is measu-

1 SOA Application is a distributed application developed under
SOA (Service Oriented Architecture).
2 SLA is a contract between the service consumer and service pro-
vider and defines the level of service.
3 This SLA defines how message delivery is guaranteed, the
Warehouse delivery messages in the proper order (least one prod-
uct in order).

Crónicas distribuidas para el reconocimiento de fallas 79

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

red in seconds, and delay in communications and the recog-
nition time of chronicles are negligible. The sequence of
events in the generic chronicle is:

Fig. 6. Chronicle divided into sub-chronicles in the e-commerce example.

• Shop Events:
(E1) Shop sends product order to Supplier.
(E13) Shop receives the list of products.
(E14) Shop makes products payment.

• Supplier Events:
(E2) Supplier receives product order
(E3) Supplier checks the products in the catalog.
(E4) Supplier provides product order to Warehouse for

the products that it has not.
(E10) Supplier receives the response of the products.
(E11) Supplier makes the invoice.
(E12) Supplier answers to shop with products shipped.

• Warehouse Events:
(E5) Warehouse receives the request of the Supplier.
(E6) Warehouse searches products (may be it invokes

other warehouses).
(E7) Warehouse updates inventory.
(E8) Warehouse packs and ships products to the buyer.
(E9) Warehouse provides the answer about the list of

products in the deposit to the Supplier
Now, we can define the specific chronicle for each

faulty behaviour that we want to diagnose. We will consider
the following failure scenarios:
• The failure because there is a violation of a Warehouse

Service Agreement (SLA violation), it is a type of web
service failure.

• The failure due to the time delay to provide a service
(Warehouse Service Delay), it is a fault in the flow of
choreography.
The detection of these two failures is interesting becau-

se they allow us to assess the ability of our system to detect
faults, both of service (local) or of choreography (global).

From current events in the choreography, we build
specific chronicles for the two faults. In general, each speci-
fied chronicle is decomposed into the same three sub-
chronicles defined above. Sometimes, for a given situation
maybe we can need less sub-chronicles, as in the case of the
failures studied (see figure 7, which shows the structure of
the specified chronicle for the Warehouse SLA Violation
and the Warehouse Service Delay faults).

To design the Chronicle Model for SLA Violation Wa-

rehouse, we analyze events in the Warehouse: the problem
of SLA violation occurs when the Warehouse Service per-
forms the products search in the event E6 (Warehouse sear-
ches products) and it does not get anything, or it does not
invoke another Warehouse (E7), or Warehouse fails in pa-
cks and ships some products to the buyer (E8)., and emits
the response to Supplier with a list empty of products. Then,
the Shop service detects a fault in the event E10 (Supplier
receives the response of the products). For this reason, the
sub-chronicle in Supplier sends the event BESC2Sea to Wa-
rehouse diagnoser (really, the CRS in supply diagnoser
sends the message), and then this diagnoser can recognize
the fault SLA Violation. When the Warehouse Diagnoser
recognizes the chronicle, it invokes the repair with the fault
found.

For the case of SLA Violation fault (case of products
search), the chronicle would be the figure 8, where pl is the
product list.

In the case of the second fault, the design of the chro-
nicle “Warehouse: Service Delay” is much more complex
(see figure 9). We consider that the service warehouse pre-
sents a delay when it emits the response to Supplier after 10
sec (it is allowed a delay of 10 sec) and this behavior is re-
peated more than 2 times in 150 sec. Thus, sub-chronicle
supplier detects when E10 event does not occurs at time
(before 10 sec) and sends the event ESC2SeaDelay to diag-
noser Warehouse each time when it detects that. For Wa-
rehouse, it recognizes a fault when it receives more than 2
times the event BESC2SeaDelay and previously received
event E5 (Warehouse receives the request of the Supplier).
When Warehouse recognizes the sub-chronicle invokes the
repair with the fault found.

Fig. 7 Distribution of events in sub-chronicles on SLA Violation Warehou-
se and Warehouse Service Delay faults.

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

80

In the previous Chronicle, T10-T4 < 12 defines a ma-
ximal time to wait E10. Additionally, TSC2SeaDelay-T5 ≤
13 is the time defined on the constraints on the Warehouse
service for the arrival of their events plus one extra time
defined by us as 6 (it is the time when the Warehouse Chro-
nicle must receive BESC2SeaDelay event). Finally, *
means any value. It is important to note that the Chronicle
model when the warehouse does not respond is totally diffe-
rent, and is entirely managed by the Supplier Diagnoser.In
the Chronicle of the figure 10, T4 + 12 due to the same
reason to the previous Chronicle: the time defined on the
constraints on the Warehouse service for the arrived of their
events plus one extra time defined by us as 6.

Sub-chronicle Shop {

 Events{ }
 Constraints{ }

 When recognized{ }
}

Sub-chronicle Supplier
{

 Events{
 event(E4: pl > 0,

T4)
 event(E10: pl = 0,

T10) }
 Constraints{
 T10-T4 ≤ 9 }

 When recognized{
 Emit

event(BESC2Sea,TSC2Sea,
Diagnoser 3) } }

Sub-chronicle Wa-
rehouse {
 Events{

 event(E5; pl > 0, T5
),

 event(E6 : pl = 0,
T6),

 event(E7: pl = 0, T7
),

 event(E8: pl = 0, T8
),

 event(E9: pl = 0,
T9),

 event(BESC2Sea,
TSC2Sea) }

 Constraints{
 T6-T5 ≤ 1
 T7-T6 ≤ 2
 T8-T7 ≤ 1
 T9-T8 ≤ 1

 TSC2Sea-T9 ≤ 1 }
 When recognized{

 repairer Invo-
ke(Warehouse, 'SLA-

Violation' }}

Fig. 8 Chronicle Model for SLA Violation Warehouse

 (case of products search)

Sub-chronicle Shop {

 Events{
 }

 Constraints{
 }

 When recognized{
 }
}

Sub-chronicle Supplier
{

 Events{
 event(E4; pl > 0, T4

),
 event(E10; pl > 0,

T10) }
 Constraints{
 T10-T4 ≥ 10

 T10-T4 < 12 }
 When recognized{

 Emit
event(BESC2SeaDelay,TSC

2SeaDelay, Diagnoser 3)
} }

Sub-chronicle Wa-
rehouse {
 Events{

 occurs((3,100),
{event(E5 ; pl = *, T5),

event(BESC2SeaDelay,
TSC2SeaDelay)}, (T5,

T5+150)) }
 Constraints{

 TSC2SeaDelay-T5 ≤ 13
}

 When recognized{
 repairer Invo-

ke(Warehouse, 'De-
lay' } }

Fig. 9 Chronicle Model for Warehouse: Service Delay

Events for the Shop Service: E1(T1 = 1, lp=3)
Events for the Supplier Service: E2(T2 = 2, lp=3), E3(T3 = 3,
lp=3), E4(T4 = 5, lp=3), E10 (T10 = 12, lp=0)
Events for the Warehouse Service: E5(T5 = 6, lp= 3), E6(T6 = 7,
lp=0), E7(T7 = 9, lp=0) , E8(T8 = 10, lp=0) , E9(T9 = 11, lp=0),
ESC2Sea(TSC2Ses = 12)

For this events flow, the algorithm 1 recognizes a SLA
Violation Warehouse fault on the Warehouse diagnoser
using the chronicle for SLA Violation. The sequence of
events that are detected and the recognition of instances of
the chronicle are shown in Figure 11. The CRS Supplier
Diagnoser recognizes the sub-chronicle "Warehouse SLA
violation error" because is instanced {E4(T4 = 5, pl=3),
E10(T10=12, pl=0)}, as Warehouse provides an empty list of
products. Then, Supplier diagnoser emits the event
ESC2Sea to Warehouse diagnoser, which recognizes the
sub-chronicle instance {E5(T5 = 6, lp= 3), E6(T6 = 7, lp=0),
E7(T7 = 9, lp=0) , E8(T8 = 10, lp=0) , E9(T9 = 11, lp=0),
ESC2Sea(TSC2Ses = 12)}.

The solution is to adjust the Warehouse service confi-
guration to perform an external search of products in order
to provide at least one product. Warehouse Repairer is in-
voked to perform the repair action (adjust external property)
to ensure the proper functioning of the choreography.

Fig. 11 Chronicles instances in Warehouse SLA Violation example.

5.3 Description of the chronicle recognition to detect Wa-
rehouse Service Delay

Let us consider now the following sequence of events
in the e-commerce application (see figure 12) :

Events for the Shop Service: E1(T1 = 1, lp=1), E1(T11 = 15, lp=2),
E1(T1 = 26, lp=4).
Events (for the Supplier Service: E2(T2 = 2, lp=1), E3(T3 = 3,
lp=1), E4(T4 = 5, lp=1), E10(T10 = 15, lp=1), E2(T2 = 16, lp=2),

Crónicas distribuidas para el reconocimiento de fallas 81

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

E3(T3 = 17, lp=2), E4(T4 = 19, lp=2), E10(T10 = 29, lp=2), E2(T2 =
32, lp=4), E3(T3 = 33, lp=4), E4(T4 = 34, lp=4), E10(T10 = 45,
lp=4).
Events for the Warehouse Service: E5(T5 = 6, lp= 1), E6(T6 = 9,
lp=1), E7(T7 = 11, lp= 1), E8(T8 = 13, lp=1), E9(T9 = 14, lp=1),
ESC2Delay(TSC2Delay = 15), E5(T5 = 20, lp= 2), E6(T6 = 21, lp=2),
E7(T7 = 26, lp= 1), E8(T8 = 27, lp=2), E9(T9 = 28, lp=2),
ESC2Delay(TSC2Delay = 29), E5(T5 = 34, lp= 4), E6(T6 = 40, lp=4),
E7(T7 = 41, lp= 4), E8(T8 = 43, lp=4), E9(T9 = 44, lp=4),
ESC2Delay(TSC2Delay = 45).

Supplier Diagnoser recognizes 3 instances; I21: {E4(T4
= 5), E10, (T10 = 15)}, I22: {E4(T4=19), E10, (T10 = 29)}
and I23: {E4(T4 = 34), E10, (T10 = 45)}. Then, Supplier
diagnoser emits the event EBSC2SeaDelay 3 times to Warehou-
se diagnoser to tell it that there is a problem of response de-
lay. In this way, Warehouse diagnoser can recognize the
sub-chronicle due to the next sequence of events {E5(T5 =
6), ESC2Delay(TSC2Delay = 15), E5(T5 = 20),,ESC2Delay(TSC2Delay =
29), E5(T5 = 35), ESC2Delay(TSC2Delay = 45)}, because it oc-
curs more than 2 times in less than 150 sec. Then, the Wa-
rehouse Diagnoser can invoke its repairer to perform the
repair action of substitution of the warehouse service.

Fig. 12 Chronicles instances in Warehouse Delay example.

5.4 Analysis of results

Our chronicles detect the faults in the system. In the
first case, at the level of a service failure (problems in it,
which results in a local failure); and in the second case, a
failure in the choreography (characteristic of distributed en-

vironments). This shows the versatility of our approach to
address these different aspects in a distributed application.

The extension of the formalism of chronicles and the
distribution of the CRS (Chronicle Recognition System)
between the services that are part of the choreography, faci-
litate the interaction of the local Diagnosers, making the re-
cognition of the global chronicle without need a coordinator
to manage their interactions. At communication level, this
represents a remarkable improvement over the mechanisms
shown in other studies (WS-Diamond 2008, Cordier y col.,
2000, Cordier y col., 2007, Quiniou y col., 2001, Dousson
2002). Additionally, the implementation of the mechanism
in the cases studied is natural (a recognizer by service). Al-
so, being a distributed approach, the scalability problem of
the distributed application can be handled properly by our
approach.

We compare our recognition mechanism for our fully
distributed chronicles approach with the propositions in (Le
Guillou y col., 2008, Boufaied y col., 2004), to calculate
the amount of events exchanged between the different diag-
nosers and the amount of processed events for the global
recognition of a chronicle. For this, we assume that this
global chronicle is composed of m events distributed bet-
ween n diagnosers (each diagnoser has in average m/n
events which are necessary for the recognition of its chroni-
cles), where m ≥ n. Table 1 shows the calculation of the me-
tric to compare different architectures.Table 1 shows that
our proposal requires only n-1 events to exchange for the
global diagnosis of chronicle, against the other architectures
that require more events. Moreover, our architecture needs
to process fewer events for the global diagnosis (m+n-1
events), against the events processed by the other architec-
tures. The reason our recognition mechanism requires less
events to exchange and process less events, is because in
our architecture the calculation is fully distributed, minimi-
zing the number of events required for global diagnosis, and
therefore the number of events to process, making it more
scalable in its implementation and ideal for diagnosing dis-
tributed system with large number of component systems.

Table 1 Compare our architectures.

Architecture events ex-

changed
Processed Events

(Global constraint + Local con-
straint)

Decentralized Architec-
ture

(Le Guillou y col.,
2008)

m=
n
mn 





∗

() 2m=m+

n
mn 














∗

Distributed Architecture
“Event Spread”

(Boufaied y col., 2004)

() 





∗−

n
mn 1

() () ()()

n
m=

n
mn+m 12n1 −∗















∗−

Our Proposal
 1−n () () 111 −














∗−








−






 n+m=

n
mn+n+

n
m

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

82

6 Conclusion

In this paper we propose a distributed mechanism ba-
sed on chronicles, which allows the distribution of the re-
cognition of the possible faults in SOA applications, which
favors its implementation in large systems. We have exten-
ded the formalism of chronicles, introducing the notion of
sub-chronicles, binding events, etc. Furthermore, we have
described the process of recognition of our model of chroni-
cle fully distributed. Our distributed approach contrasts with
the semi-centralized and decentralized ap-proaches that ha-
ve been developed so far. In the case study, we test the dis-
tributed recognition mechanism to detect failures in two si-
tuations, at the level of the service (locally), and in the
composition (globally). Additionally, we have shown in the
case study that our recognition mechanism is simple to im-
plement. Particularly, the fact to operate fully distributed is
a notable advance in this area.

Thus, the recognition mechanism of distributed chroni-
cle proposed in this work can be used not only in the mana-
gement of faults in web service composition, but in other
areas that require the distributed temporal pattern recogni-
tion, such as distributed simulations, community of software
agents, etc.

Futures works need test our approach in real buses of
services like OpenESB, this requires the implementation of
the Chronicles using the Intelligent Event Process (IEP)
component of OpenESB. IEP allows to event management
using SQL (Structured Query Language). Thus, for each
sub-chronicle is necessary to implement an IEP for events
recognition and a communication mechanism that allows
the distribution of Bidding Event between the different sub-
chronicles, in order to reach a global recognition.

7 Acknowledgment

This work has been supported by FP7-ICT IMAGINE
research project (European Commission, Grand Agreement
No: 285132), and the PCP program “Supervision and main-
tenance tasks in a shared organizational environment”. Dr
Aguilar has been partially supported by the Prometeo Pro-
ject of the Ministry of Higher Education, Science, Techno-
logy and Innovation of the Republic of Ecuador.

References

Aghasaryan A, Fabre E, Benveniste A, Boubour R, Jard C,
1998, Fault detection and diagnosis in distributed systems :
an approach by partially stochastic petri nets, Discrete
Event Dynamic Systems, Vol. 8, No. 2, pp. 203-231.
Boel, R, van Schuppen, J, 2002. Decentralized failure diag-
nosis for discrete-event systems with costly communication
between diagnosers. Proc. Sixth IEEE International Work-
shop on Discrete Event Systems, pp. 175-181.
Boufaied A, Subias A, Combaceau M, 2004, Distributed
fault detection with delays consideration, Proc. of the 15th

Int. Workshop on Principles of Diagnosis.
Cordier, M, Dousson C, 2000, Alarm driven monitoring
based on chronicles, Proc. of Safeprocess’2000, pp. 286-
291.
Cordier M, Le Guillou X, Robin S, Roze L, Vidal T, 2007,
Distributed chronicles for on-line diagnosis of web services.
Proc. of 18th International Workshop on Principles of Di-
agnosis, pp 37–44
Dousson C, 2002, Extending and unifying chronicle repre-
sentation with event counters, ECAI, pp. 257-261.
Dousson C, Gaborit P, Ghallab M, 1993, Situation recogni-
tion: representation and algorithms, Proc. of the Int. Joint
Conf. on Artificial Intelligence, pp. 166-172.
Guerraz B, Dousson C, 2004, Chronicles construction start-
ing from the fault model of the system to diagnose, Proc. of
the 15th Int. Workshop on Principles of Diagnosis, pp. 51-
56.
Grosclaude I, 2004, Model-based monitoring of component-
based software systems, Proc. of the 15th Int. Workshop on
Principles of Diagnosis, pp. 51-56.
Le Guillou X, Cordier MO, Robin S, Rozé L, 2008, Chroni-
cles for On-line Diagnosis of Distributed Systems, Proceed-
ing of the 18th European Conference on Artificial Intelli-
gence, pp.194-198.
Le Mortellec, A, Clarhaut, J, Sallez, Y, Berger, T, &
Trentesaux, D, 2013, Embedded holonic fault diagnosis of
complex transportation systems. Engineering Applications
of Artificial Intelligence, Vol. 26, No. 1, pp. 227-240.
Mhalla A, Jerbi N, Collart S, Craye E, Benrejeb M, 2010,
Distributed Monitoring Based on Chronicles Recognition
for Milk Manufacturing Unit, Journal. of Aut. & Syst. Eng,
Vol. 4 No. 1.
Morin B, Debar H, 2003, Correlation on intrusion: an appli-
cation of chronicles, 6th International Conference on recent
Advances in Intrusion Detection RAID, Pittsburgh, USA.
Nakata, S, Takai, S, 2013, Reliable decentralized failure di-
agnosis of discrete event systems. SICE Journal of Control,
Measurement, and System Integration, 6(5), pp. 353-359.
Quiniou R, Cordier M, Carrault G, Wang F, 2001, Applica-
tion of ilp to cardiac arrhythmia characterization for chroni-
cle recognition, ILP’2001, pp. 220–227.
Roychoudhury, I, Biswas, G, & Koutsoukos, X., 2009, De-
signing distributed diagnosers for complex continuous sys-
tems. IEEE Transactions on Automation Science and Engi-
neering, 6(2), pp. 277-290.
Vizcarrondo J, Aguilar J, Exposito E, Subias A, 2012,
ARMISCOM: Autonomic Reflective MIddleware for man-
agement Service COMposition, Proceedings of the 4th
Global Information Infrastructure and Networking Sympo-
sium (GIIS 2012), IEEE Communication Society, Choroni,
Venezuela.
WS-Diamond, 2008, WS-Diamond, IST-516933, Delivera-
ble D4.3, Specification of diagnosis algorithms for Web
Services – phase 2. Version 0.5.

Crónicas distribuidas para el reconocimiento de fallas 83

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

Recibido: 15 de julio de 2014

Aceptado: 26 de marzo de 2015

Vizcarrondo, Juan: is System Engineer and obtained a
Msc in Computer Science at the Universidad de los Andes,
Mérida-Venezuela, Currently he's finished his studies PhD
in Computer Science at the Universidad de los Andes. He
works at the Cenditel since 2007.

Aguilar José: is System Engineer from the Universidad of
the Andes-Mérida-Venezuela, obtained a Msc in Computer
Science at the University Paul Sabatier-Toulouse-France,
and a PhD in Computer Science at the University Rene
Descartes-Paris-France. Also did a Postdoctoral in De-
partment of Computer Science at the University of Houston.
Email: aguilar@ula.ve

Exposito, Ernesto: earned his engineer degree in computer
science from the "Universidad Centro-occidental Lisandro
Alvarado" (Venezuela, 1994). He earned his PhD in “In-
formatique et Télécommunications” from the Institut Natio-
nal Polytechnique de Toulouse (France, 2003). Email: ern-
esto.exposito@laas.fr

Subias Audine: received a PhD degree in 1995 and a M.S.
degree in 1992 in Informatique Industrielle, both from Paul
Sabatier University, in Toulouse, France. Since 1997 she is
Associate Professor in control and discrete event systems at
the Institut National des Sciences Appliquées (INSA) of Tou-
louse. Email: subias@laas.fr

 Vizcarrondo y col.

Revista Ciencia e Ingeniería. Vol. 36, No. 2, abril-julio, 2015

84

