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Abstract

In this research work, a new nonlinear mathematical model is proposed to represent the nonlinear dynamics of the slider-
crank mechanism. Then, the nonlinear model is rewritten into a particular nonlinear class of mathematical model structure
in the discrete-time case, defined by polynomial terms, with the purpose to control the mechanism in a large range of posi-
tional angles. Generalized minimum variance nonlinear control for the known system case, and implicit self-tuning nonline-
ar control based on generalized minimum variance for the presence of uncertainty parameters are used to regulate to a de-
sired position the proposed nonlinear mathematical model for the slider-crank mechanism. This paper presents the first
simulation results of the nonlinear implicit self-tuning control based on generalized minimum variance applied to a nonlin-
ear mathematical model of a real system. The simulation results show the good performance of the system output response
and the control law.

Key words: Generalized minimum variance, nonlinear systems, self-tuning control, slider-crank mechanism.

Resumen

En este trabajo de investigacion se propone un nuevo modelo no lineal que permita representar las dindmicas no lineales
intrinsecas del mecanismo corredera-biela-manivela. Este modelo no lineal se reescribe para satisfacer una estructura
predefinida descrita por funciones polinémicas a tiempo discreto, con el propésito de luego controlar el mecanismo en un
mayor rango de posiciones angulares. En el caso ideal donde los parametros del sistema son todos conocidos, se muestra el
uso del control no lineal por minima varianza generalizada para regular el sistema. Por otra parte, para el caso donde los
parametros del sistema presentan incertidumbre, se propone el control no lineal auto-ajustable basado en minima varianza
generalizada para controlar el modelo matematico no lineal propuesto del mecanismo a una posicién angular deseada. Es-
te articulo presenta los primeros resultados, a través de simulaciones, del control no lineal auto-ajustable implicito basado
en minima varianza generalizada aplicado a un modelo matemético no lineal de un sistema real. Los resultados simulados
demuestran el buen comportamiento de las dinamicas tanto de la salida del sistema como de la ley de control.

Palabras claves: Minima varianza generalizada, sistemas no lineales, controlador auto-ajustable, mecanismo corredera-
biela-manivela.

control, as the work done by (Jerez y col., 2005).

1  Introduccién The slider-crank mechanism has a very wide usage
in machine design. Some of the applications are found in

Real world systems are mostly nonlinear systems internal combustion engines, in electrical switch gears,

and it is of interest to study the case of controlling nonli- packaging and textile engineering (Yalcin 2014). Several
near model by nonlinear control, and to analyze if the be- control techniques have been presented in this system in
nefits are worthwhile than to use linear model and linear the literature; however the control law is designed based
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on a linear model in the system.

The stability of implicit self-tuning control has been
proved, for the linear discrete-time case, by the use of a
Lyapunov function in (Patete y col., 2008a), where simu-
lation results controlling linear model under parameter
uncertainties showed good performance. Saitoh and Fu-
ruta (Saitoh y col., 2007, Furuta y col., 2009) implemen-
ted the generalized minimum variance combined with
self-tuning control algorithm to a real slider-crank me-
chanism, using a linear model for the real system. The
linear model was obtained by the projection method ap-
proach (Blajer 1996), and the results show good perfor-
mance for control objectives near to initial conditions.
Letter on, the control algorithm results were extended to
the MIMO (multiple input multiple output) linear case in
(Sugiki y col., 2008, Furuta y col., 2011, Ohata y col.,
2014), applying the implicit self-tuning control to an en-
gine model.

Bilinear systems are the simplest class of nonlinear
systems and can also be regarded as a practical starting
point for the study of other nonlinear systems. A new al-
gorithm was proposed, based on the results in (Patete y
col., 2008a), for the self-tuning control combining recur-
sive parameter estimation and generalized minimum va-
riance criterion, for a class of bilinear systems in (Patete
y col., 2008b, 2011), and also for an extended and more
relaxed class of bilinear systems, where the control action
could be presented only in the bilinear term in (Patete y
col., 2010, 2014). The validity and performance of the
algorithm were demonstrated through simulation results
considering as a case of study the mathematical bilinear
model for nuclear fission system (Patete y col., 2014).

A nonlinear class of systems was defined, and a
nonlinear implicit self-tuning control of the defined class
was presented in (Patete y col., 2015), yet only theoreti-
cal results were given.

This paper presents the first simulation results of the
nonlinear implicit self-tuning control based on generali-
zed minimum variance applied to a nonlinear mathemati-
cal model of a real system, the slider-crank mechanism,
based on the nonlinear control algorithm proposed in
(Patete y col., 2015).

The paper is organized as follows: section 2 presents
the basic theory of the nonlinear implicit self-tuning con-
trol based on a generalized minimum variance algorithm
for a class of nonlinear mathematical models. In section
3, a new nonlinear mathematical model for the slider-
crank mechanism is proposed. As a case of study, the
nonlinear implicit self-tuning control based on generali-
zed minimum variance is applied to the nonlinear mat-
hematical model for the slider-crank mechanism in sec-
tion 4, and simulation results are showed. Some remarks
are given at the end.

Nonlinear Implicit Self-Tuning Control based on the
Generalized Minimum Variance for a Class of Nonlinear
Mathematical Models

A nonlinear implicit self-tuning controller has been
proposed (Patete y col., 2015) to regulate a defined class
of nonlinear system models. The proposed algorithm is
presented in this section as follows:

Consider the general, Single Input Single Output
(SISO), structured in the discrete-time case of a nonlinear
system model as in (1),

A(Z'q)yk = B(Z'q)uk! 1)

where Y, is the output signal of the process, U, is
the input signal, Z denotes the time shift opera-
tor:z'y, =y, ,; A(z,q) and B(z,q) are
polynomials of the form:

Az =1+ 2@z,

B(z,9) =Y b, @)z,

N is the order of polynomial A(z,q)and M is the

order of polynomial B(z,q), q in the general case is a

function of the input and output signal of the process as
in(2),

q=h(y,,u,). )

where h(y,,u,) is any function (linear or nonline-
ar). Then, to obtain the nonlinear model to fit in the defi-
ned class (Patete y col., 2015), the function h(y,,u,) is
restricted to be a function depending only of the output
process data, i.e. h(y,),then q is as follows:

v =h(yk)=ihuy“1 (6)

kin1’

where h;; are the coefficients contained in the fun-
ctions: a,(q) and b;(q), of system model (1).

In general, the class of nonlinear systems is defined
as a SISO time invariant model (7) with the following
structure (Patete y col., 2015):

Yirn + 2.8(0) Yioni =b(@)u, 7
i=1

with  as in (6).

The generalized minimum variance control based on
the concept of discrete-time sliding mode is proposed in
(Patete y col., 2015) for the defined class of nonlinear
systems (7) as:
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Consider the general nonlinear model (7), if:

a,(d) =D &Y
i=1

a, (a) = 2 &y yli<_+1n—2 '
i=1
®)
an (q) = Z ani yli(717
i=1

b (@)= b,

then, substituting (8) in (7), the following (9) is ob-
tained

A )Y+ 2 A, ()Y =
- ©)
7z (B(zl)uk +Zryiu (zl)yLukJ,
A

where
Az =1+> a,7",
i=1
-1 . S
Aykz(Z ):iZ:l:aizz )

n
N S
Ayg(z )—;aisz ;

-1y _ C -
Aykn(z )_;ainz !
B(z) =b,,

r,, (29 =h,
FYEUk (Z_l) = b2'

r, ("=h,

The control objective of the control law is to mini-
mize the variance of the linear controlled sliding mode
variable s, defined as (10):

Siid = C(Z_l)(ykm —lg)t Q(Z_l)uk , (10)

where polynomials C(z™') and Q(z™') are de-
fined as in (11) and (12) respectively,

C(z‘l):1+zn:ciz“, (11)
i-1
Qz ") =0q,(1-2"), (12)

Polynomials C(z™*) and Q(z™") are designed, so
that the error signal €, , defined as (13), vanish:

e =Y I, (13)
where I is the reference signal.

Using the Diophantine equation (Chang y col.,
1968):

CzH=AZHEEH+z'F(z ), (14)
where,

F(Z—l) — Z f i_lz—n+l’
i=1

d
Ez ") =) e,
i=1

equation (14) is rewritten as (15):

CZ ey = F@ )Y+ 2P, ()Y +
i=2

. (15)
E(z By +D P, (2,
= Yk
where:
P, (zH= —E(z‘l)Ayi (zh), i=23...,n
P, @N=E@Hr, @, i=12..n
Combining (15) and (9), the variable S, is:
Sea = F 7)Y+ Z Py‘k (Z7) Vs +G (Y,
= (16)

+ z Pylkuk (Zil)yliuk _C(Zil)rk+d !
i=1

where G(z) =E(z)B(z ") +Q(z ™).
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Then, the generalized minimum variance control in- o -[ £ f p P
. . . .. “Lloreeer Tna P20 ea Ty pad-1re oo
put required to vanish S, in (10) is given by (Patete y K k
col., 2015), Pygo"--’ Pykn a1 G0 Gy ey Pykuko,..., (22)
Y=L 7y 00 Pylgukd71 ]

@YY+ LR @ Wes=CE s gy

uk == n .
G(zH)+Y P, (T
i=1

For the implicit self-tuning control, system (9) is
considered as a system with the same structure; however
uncertainty parametric is taken into consideration. Then,
the parameters of the nominal control law (17) are esti-
mated each sampled time.

The closed-loop stability of self-tuning control of
the defined nonlinear systems class, based on the general-
ized minimum variance criterion, is given by the follow-
ing recursive estimation equations (Patete y col., 2015):

A A

6, =6_,+
Fk-l@—d -1 T A (18)
— =27 e  Is +C(z r, — o, ,
T d T, s [s, +C(z7)n —d_46,1]
r T
= - k—1§4T<—d¢l<—d k—1’ (19)
1+¢a<—drk—l¢k—d
where
B =Dir- o Vi Yoo s Yoondazr- -
yl?""’y:—n—dﬂ’uk’“"uk—dﬂ’ykuk""’ (20)

2 2
yk—d+luk—d+l’ ykuk 1o yk—d+1uk—d+l'

n n
ykuk 1oy yk—d+1uk—d+1]

is the vector containing measured output and control
signal data,

0" =[Tgrees fosPgresPanig o

PororrPania1r 9o Gags Pyyore o (21)
P

P Ppyal

qukdfl’“" YankO,“' YicUk

is the vector containing the controller parameters,
and

is the estimate of 4.

The controller uses identified parameters (Patete y
col., 2015) as follows:

E(gt nls, v _c(zYr
Uk:_ (Z )yk+§ yi (Z )yk+d (Z )k+d (23)

Sz +Y P, @y
i=1

The given algorithm is based on the idea of the dis-
crete-time sliding mode control concept (Furuta 1990,
1993).

3 A Nonlinear Mathematical Model for the Slider-
Crank Mechanism

The slider-crank mechanism is a system that can
convert linear forces into rotational torque. The slider-
crank mechanism is used in many real systems like au-
tomobile engines. Fig. 1 shows a schematic model of the
slider-crank mechanism. The slider is restricted by its di-
rection of motion on the x-axis and the center of the
wheel, for the rotation axis, is fixed at the origin. Table 1
shows the model variables and Table 2 the parameters of
the slider-crank mechanism.

\(x,. \ y.) (x,,5,)
0] 12 .

8 4 ('X.L‘ ’ ,V‘. )

Fig. 1. Schematic model of the slider-crank mechanism

o] ~
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Table 1. Variables of slider-crank mechanism

m Slider position
(%:¥,) | ™ P
[m] Connecting rod COG
X Yr)
I2) [rad] Wheel angle
¢ [rad] Connecting rod angle
f [N] Input force to slider

Table 2. Parameters of slider-crank mechanism

m [Ka] Slider mass
p
d [N.s/m] Slider viscous coefficient
p
m [Ka] Connecting rod mass
r
J [Kg.m?] Inertia around COG of connecting rod
r
| [m] Connecting rod length
[Ka] Wheel mass
mC
d [N.m.s/rad] Wheel viscous coefficient
C
J [Kg.m?] Inertia around COG of wheel
C
r [m] Wheel radius

A mathematical model for the slider-crank mecha-
nism was proposed by (Saitoh y col., 2007, Furuta y col.,
2009) using the projection method (Blajer 1996), where
after some consideration and conditions this nonlinear
system is represented by a linear model. As it’s known, a
nonlinear system represented by a linear model may be
controlled and assured its global stability only near its
operating point and perhaps some nonlinear dynamics get
lost. In this work a new nonlinear model is proposed to
represent the nonlinear dynamics of the slider-crank
mechanism.

The slider mass m, and the connecting rod mass
are assumed to be one hole mass with COG in m,.
Then, the force f applied to m, is equal to the force
f applied at the end of the connecting rod.

Based on Fig. 2, where X, is the base and d, the

high of the formed triangle respectively; using Newton’s
second law for the translational movement, and knowing

that slider viscous coefficient force d b works against the

input force f

Xp
o1 Jd,
r
I
Fi
D> F=ma, (24)
f —dpxp =m,X,. (25)

From the formed triangle the following relation (26)
is obtained:

x, =rCos(8)+1Cos(g). (26)

The first and second derived of (26) are,

X, =—rSin(0)0-1Sin(¢)4, @27)
X, =—r| Cos(0)0+Sin(6)6 |- o8
[ Cos(#)¢+Sin(4)¢ -

Substituting (27) and (28) in (26), the following (25)
is obtained,

f—d,[-rsin(6)0-1sin(¢)¢]|=
mp[—r[COS(0)9+Sin(¢9)9]— (29)

I[Cos(¢)d+Sin(¢)4] |

As the variable to be controlled is the wheel an-
gle @, then (29) should depend only on €. Using the
triangle relation (30), (31) is obtained:

d, =1Sin(¢)=rSin(6), (30)

Sin(¢):TrSin(¢9). (31)
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To obtain a relation for cos(¢) , the cosines law is
used from Fig. 2,

d,? =1 +1?Cos’ () —2I[ 1 Cos () | Cos (). (32)

From (30),

2 d’?=r?Sin*(9),
(33)

substituting (33) in (32), (34) is obtained,

r?Sin’(6)=1?+1? Cos® (¢)—21°Cos* (¢). (34)

Manipulating (34), (35) is calculated,

Cos ()= 1 5in’ (6). @)

Using Newton's Binomial Theorem for the right side
of (35)

2 P 1
{1—:—2Sin2(0)}2_12—%12 |r Sin’ (0)+
(36)

3
2 4
le |—48|n (0)+
The superior terms of (36) are insignificant numeri-

cally; therefore (36) may be rewritten in the following
way:

1
2 B 1 2
{1—:—2Sin2(6’)}2:12—%Ir—zSinz(H), (37)

then,

c;os(¢):,/1_|r_:sm2(e): 20 s (0).

(38)

From (31), using (38), (40) is computed

. rCos(0) .
; _mg, (39)
. 2lrCos(0)
¢_2I2—r28in2(9) ’ “
Deriving (39),
T (cos(6)6-sin(0)6)+Sin(¢)¢
é = | , (41)

Cos(¢)

substituting (31), (38) and (40) in (41), (42) is ob-
tained,

21r(21°GCot(6)-21°6) N
41*Csc(6)—41%r?Sin(0)+r*Sin*(9)
21r(r?sin’(0)0)
41°Csc(6)—41%r?Sin(0)+r'Sin’ (0)
2Ir[rCos(¢9)(rS|n )6 - 2I¢9]
41°Csc(6) - 41%r?Sin(0)+r*Sin* (0)

é=

(42)

Finally, to obtain the translational movement equa-
tion, (31), (38), (40) and (42) are substituted in (29):
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f+2Im@+d,rsin(0)6 .
) 2l rSin(29)
_S 9 _
mpr( in(0) 4I2—r2+r2Cos(20)J
2m,rCos(6)6 .
) 2l rSin(2¢9)
_S 9 _
mpr( in(0) 4I2—r2+rZCos(20)J
16m,1%r’sin® (0)Cos ()0
(4I2 —r? +r2Cos? (249))2
+
) 21 rSin(20)
m”r(_sm(e)_mz—r?+rZCos(29)J
216(d r? sin(20)-41°m, )
417 —r? +r’Cos(20)

21 rSin(26) J

—Sin(0)-
mpr( in(0) 412 —r? +r*Cos(26)

0=

(43)

For the rotational movement:
> r=16, (44)
T, —1, =130, (45)
f Sin(¢9)—d06"=§mC r’é, (46)
_ 5(d.6—r f Sin(0)) | o

2m_r?

Equaling (43) and (47), the first order no linear
model for the slider-crank mechanism is obtained and
presented in (48),

0=
1000 f*1?’m_Sin[#]Tan[6]
p R rZCos[2¢9])

Cos[4]+ Cos[36])
411~ £ 1r%)Cos[0] + f rsin‘[6]) |

*m, (161° —5r*)(241% —5r*)(41* - r?)

[
(
(4I2 —r’+ rZCos[ZQ])
(
(

—81%r +3Ir° +(321* - 4I2r2+r4)Cos[6?])
r*)+rCos[30](81° ~3r*))
1+2Cos[26])(2r*d m, —5dcmp)4

r +8ICos[8] + 2rCos[26] +
8ICos[34]+ 2rCos[46]]

[32|4r2d ,m,Sin[6]+m, (~801*Sin‘[4]d,

(-
(8IC05[2¢9] (217~
(
[

r* (21Cos{46] + rCos[56])m, ) |
(48)

The obtained nonlinear model (48) is a first order
dynamical model, which is simpler than other models
presented in the literature derived from the Euler-
Lagrange technique, e.g. (Yalcin 2014). However, this
model (48) captures the natural nonlinear behavior of the
real system showed in Fig. 1.

Cases of Study: Slider-Crank Mechanism

In this section, simulation results are given for the
application of the proposed nonlinear control: i) general-
ized minimum variance nonlinear control input (17), and
ii) the set of equations (18)-(20) for the nonlinear implicit
self-tuning, to the slider-crank mechanism nonlinear
model proposed in this work.

First, the slider-crank mechanism model given in
(48) should be transformed to a model represented poly-
nomial terms as in (9). For that purpose the nonlinear
terms in (48) are substituted by the respective Taylor Se-
ries. In this case only the first two terms of each series
are considered, e.g.
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3 -1\ _
sin(0)=0+ 2. Ap(27)=
6 L S L [ e
Then, to represent the model in the discrete-time 21° 212 ’
case as in (9), with T0 representing the sampling-time Ae“ (z‘l) =
iod:
Pere 5d,m, (17 +4Ir +6r?)-21°r’d m,
0(t)=6(kT,), 241%r*mm, i
r(2dpmC (417 +6lr +3r2)—15dcmp) )
and using Euler approximation for the first derivate: - 24|3mcmp ",
B(z)=——1
; O((k+1)T,)-0(kT,) 2rm,’
(t)0 , P
To o T(2r’m —5Im (1+1))
Yezf (Z_ ): 2 !
Al“rm m
the following discrete-time model (49) is obtained, _
Ye“f (Z 1) -
T, (-8r*m, +5Im, (21° +51°r +6Ir* +3r°))
A(21)0q + Ay (27)05 +A,(27)65 + 241 rmm,_ !
Ma(2)0t, =2 [B(27) v, ()=
Y, (271)9&) fkTO £Y, (271)9;T0 fkTO + - 5T, (9+36|3r +16212r2 +10Ir® +81r4)
; ) (49) 12961*rm ’
Yaef (Z l)efTo fkT +Y98f (Z l)HETo fkT 2 ’ 2
N N 4y 5Tr(717 +4Ir+12r?)
Yglof (Z )ekTo fkTU +Y0~1zf (Z )49”0 fkTO + Ygsf (Z )= 288I4m )
Yo (27) 0 T, | L BTr(212+9r?)
Yo (27)=- 864l'm.
where
Ly 5T (1P +12r%)
Ve (7)== oasaim
10368!*m,
A(z’l):l— 7zt ~ (Zfl):_ 5T,r°
oy o 207361'm,
A (z)= .
2dpmclr2(l+r)—5dcmp(1+lr)zfl_ d=1.
4%r’mm,
2 _ Then from (17), the generalized minimum variance
demclr (I * r) 5d°mp (1+ Ir) 2*2’ control, to this particular model (49), is (50)
A%r*mom
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u, =-—
F(z )0 +P. (216 4+ +P. (20 s —C(z)N 4
G(z)+P,, )G +...+P. (zHG"

gl
(50)
where,

P, () =-A, (21)E(z?) i-2.34
P, (Y=Y, (z')E(z") j=24..14

G(z = B(z‘l) E(z‘1)+Q(z‘1).

with | pair.

In this mechanism some parameters may be meas-
ured and some others not; as are the cases for the viscous
coefficients, where only an interval of values for that pa-
rameters are known. The parameter values in this case of
study are show in Table 3.

Table 3. Parameter values for the slider-crank mechanism model

m, [Kd] 0.3
d [N.s/m] [0.005; 0.07]
p
| [m] 0.35
m [Kg] 2.852
C
d [N.m.s/rad] [0.001; 0.05]
C
r [m] 0.11

The sampling-time period is assumed as
T, =0.0001s, the output angle is initiated in

20z

9(0) . For the control design the following

polynomials are chosen:
C(Z’l) =1+0.5263z", (51)

Q(zH)=0.11-z"). (52)

As there are uncertainties in the viscous coefficients,
the implicit self-tuning control (18), (19) and (23) is
used, with I'=I", = | , and the desired output position

(reference signal) is 6(o0) = % This final position is

considered because it is far from the initial position, and
linear controllers commonly don’t stabilize the system in
this case, as they show good performance only in cases
near to the initial position (local control).

Fig. 3 shows the output responses of the slider-crank
mechanism (49), when the generalized minimum vari-
ance (GMV) and the self-tuning (ST) algorithms are
used, considering parametric uncertainties in the viscous
coefficients. The control dynamics for both algorithms,
generalized minimum variance control (GMVC) and self-
tuning control (STC), are shown in Fig. 4. Finally, the
sliding mode variable (SMV) for each case is presented
in Fig. 5.

The generalized minimum variance control is not
able to control the system to the reference because of the
presence of uncertainty parameters, as it is shown in Fig.
3. On the contrary, the self-tuning control is able to reach
the objective and the output dynamic presets good per-
formance in steady-state. In Fig. 5 it is seems how the
sliding mode variable vanishes (goes to zero) as the con-
trol objective is reached when the self-tuning control is
applied.

It is worth to mention that in the case where there
are no parameter uncertainties, the generalized minimum
variance control is able to control the system to the refer-
ence with good performance in steady-state.

The self-tuning control based on generalized mini-
mum variance is able to control the nonlinear system in a
large range of positional angles, while commonly linear
controllers’ don’t do it.

0.004 { [s]

L 0001 0002 0003

Fig. 3. Output dynamics of the slider-crank mechanism
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u, [ N ]
10 STC GMVC

W LI
TR

-10

n.001 0.002 0.003 0.004

Fig. 4. Control dynamics

S.'l\.
5
i SMV-ST
/
3
SMV-GMV
0/

0001 n.ooz 0.003 0.004

Fig. 5. Sliding mode variable dynamics
5 Conclusions

A new nonlinear mathematical model was proposed
for the slider-crank mechanism. The nonlinear model was
rewritten into the particular nonlinear class of mathema-
tical model structure in the discrete-time case. Generali-
zed minimum variance nonlinear control and implicit
self-tuning nonlinear control based on generalized mini-
mum variance for the presence of uncertainty parameters
were used to regulate to a desired position the proposed
nonlinear model. The simulation results showed that the
nonlinear self-tuning control is able to reach the angular
position objective and the output dynamic presets good
performance in steady-state, in spite of model parametric
uncertainties and angle initial condition is far from the
angular desired position.
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