Ingeniería de tejidos: Avances, desafíos y perspectivas futuras
Resumen
La ingeniería de tejidos integra principios de biología, medicina, ingeniería y ciencia de materiales para diseñar y desarro-llar sustitutos funcionales para tejidos y órganos dañados o enfermos. La investigación explora la historia, función, desafíos y la aplicación del tejido en la ingeniería biomédica. Siendo explicado con ejemplos basado en hechos, que demuestran cómo la ingeniería de tejidos influye en la toma de decisiones, las prácticas de investigación y el desarrollo de tecnologías médicas para mejorar la atención y los resultados del paciente. A su vez, explora las últimas mejoras en biomateriales, biología celular y técnicas de fabricación de tejidos, destacando su potencial para revolucionar los tratamientos médicos. Este enfoque multidisciplinario parte del objetivo de conceptualizar, identificar el paradigma, los procesos y el diseño de la ingeniería de tejidos focalizado en restaurar, mantener o mejorar la función de los tejidos y, en última instancia, mejorar la calidad de vida y la longevidad de los pacientes.
Recibido: 10 de febrero de 2024
Aceptado: 06 de julio de 2024
Palabras clave
Texto completo:
PDF (English)Referencias
Anyanwu, E. C., Osasona, F., Akomolafe, O. O., Ogugua, J. O., Olorunsogo, T., & Daraojimba, E. R. (2024). Bio-medical engineering advances: A review of innovations in healthcare and patient outcomes. International Jour-nal of Science and Research Archive, 11(1), 870-882. https://doi.org/10.30574/ijsra.2024.11.1.0139
Atala, A. (2004). Tissue engineering and regenerative medi-cine: concepts for clinical application. Rejuvenation re-search, 7(1), 15-31. https://doi.org/10.1089/15491680432310505
Augustine, R., Dan, P., Hasan, A., Khalaf, I. M., Prasad, P., Ghosal, K., ... & Maureira, P. (2021). Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomedi-cine & Pharmacotherapy, 138, 111425. https://doi.org/10.1016/j.biopha.2021.111425
Bell, E. (1993). Tissue Engineering, An Overview. In: Bell, E. (eds) Tissue Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8186-4_1
Birla, R. (2014). Introduction to Tissue Engineering: Appli-cations and Challenges. Alemania: Wiley. Birla, R. K., & Williams, S. K. (2020). 3D bioprinting and its potential impact on cardiac failure treatment: An indus-try perspective. APL bioengineering, 4(1), 010903. https://doi.org/10.1063/1.5128371
Brimmer, S., Ji, P., Birla, A. K., Keswani, S. G., Caldarone, C. A., & Birla, R. K. (2023). Recent advances in bio-logical pumps as a building block for bioartificial hearts. Frontiers in Bioengineering and Biotechnol-ogy, 11, 1061622. https://doi.org/10.3389/fbioe.2023.1061622
Buttery, L. D., & Bishop, A. E. (2005). Introduction to tissue engineering. In Biomaterials, artificial organs and tissue engineering (pp. 193-200). Woodhead Publishing. https://doi.org/10.1533/9781845690861.4.193
Cai, R., Gimenez-Camino, N., Xiao, M., Bi, S., & DiVito, K. A. (2023). Technological advances in three-dimen-sional skin tissue engineering. Reviews on Advanced Materials Science, 62(1), 20220289. https://doi.org/10.1515/rams-2022-0289
Chan, Y. Y., Sandlin, S. K., Kurzrock, E. A., & Osborn, S. L. (2017). The current use of stem cells in bladder tissue regeneration and bioengineering. Biomedicines, 5(1), 4. https://doi.org/10.3390/biomedicines5010004
Collier, C. A., Mendiondo, C., & Raghavan, S. (2022). Tis-sue engineering of the gastrointestinal tract: the historic path to translation. Journal of Biological Engineer-ing, 16(1), 9. https://doi.org/10.1186/s13036-022-00289-6
De Chiara, F., Ferret-Miñana, A., Fernández-Costa, J. M., & Ramón-Azcón, J. (2024). The Tissue Engineering Rev-olution: From Bench Research to Clinical Reality. Bio-medicines, 12(2), 453. https://doi.org/10.3390/biomed-icines12020453
Dennis J.M. (1992). Spare Parts: Organ Replacement in American Society - Renee C. Fox, Judith P. Swazey, (eds.) New York: Oxford University Press, 320 pp. ISBN 0-19-507650-8. Oxford University Press, 200 Madison Ave., New York, NY 10016, USA. Politics and the Life Sciences. 1993;12(2):283-285. https://doi.org/10.1017/S0730938400024254
Derman, I. D., Singh, Y. P., Saini, S., Nagamine, M., Banerjee, D., & Ozbolat, I. T. (2023). Bioengineering and Clinical Translation of Human Lung and its Com-ponents. Advanced biology, 7(4), e2200267. https://doi.org/10.1002/adbi.202200267
Edgington, S. M. (1992). 3–D Biotech: Tissue Engineering. . Nat Biotechnol 10 (8), 855–860. https://doi.org/10.1038/nbt0892-855
Edgington, S. M. (1994). A new force in biotech: tissue en-gineering. Nat Biotechnol 12 (4), 361–364 (1994). https://doi.org/10.1038/nbt0494-361
Elia, E., Brownell, D., Chabaud, S., & Bolduc, S. (2022). Tis-sue engineering for gastrointestinal and genitourinary tracts. International Journal of Molecular Sciences, 24(1), 9. https://doi.org/10.3390/ijms24010009
Elsevier. (2021). Mendeley (Version v1.19.8) [Computer software]. https://www.mendeley.com/search/
Hasirci, V., & Hasirci, N. (2024). Tissue Engineering and Regenerative Medicine. In: Fundamentals of Bio-materials. Springer, Cham. https://doi.org/10.1007/978-3-031-54046-2_19
Heineken, F. G., & Skalak, R. (1991). Tissue engineering: a brief overview. J Biomech Eng. 113(2): 111-112 https://doi.org/10.1115/1.2891223
Helmrich, A., & Barnes, D. (1998). Animal cell culture equipment and techniques. Methods in cell biology, 57, 3-17. https://doi.org/10.1016/S0091-679X(08)61568-X
Hester, A.G., & Atala, A. (2016). Translational Research Methods: Tissue Engineering of the Kidney and Uri-nary Tract. In: Avner, E., Harmon, W., Niaudet, P., Yo-shikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_17
Huang, G., Zhao, Y., Chen, D., Wei, L., Hu, Z., Li, J., ... & Chen, Z. (2024). Applications, advancements, and chal-lenges of 3D bioprinting in organ transplantation. Bio-materials Science, 12(6), 1425-1448. DOI: 10.1039/D3BM01934A
Khait, L., Hecker, L., Blan, N. R., Coyan, G., Migneco, F., Huang, Y. C., & Birla, R. K. (2008). Getting to the heart of tissue engineering. J. of Cardiovasc. Trans. Res. 1 (10, 71–84. https://doi.org/10.1007/s12265-007-9005-x
Kubrusly L. F. (2019). Ventricular Assist Devices: an Evolving Field. Brazilian journal of cardiovascular surgery, 34(1), III–V. https://doi.org/10.21470/1678-9741-2019-0043
Langer, R., & Vacanti J.P. (1993). Tissue engineering. Science, 260(5110), 920-926. DOI: 10.1126/science.8493529 PMID: 8493529
Li, Y., Ma, Z., Ren, Y., Lu, D., Li, T., Li, W., Wang, J., Ma, H., & Zhao, J. (2021). Tissue Engineering Strategies for Peripheral Nerve Regeneration. Frontiers in neurol-ogy, 12, 768267. https://doi.org/10.3389/fneur.2021.768267
Li, Z., Xiang, S., Li, E. N., Fritch, M. R., Alexander, P. G., Lin, H., & Tuan, R. S. (2021). Tissue Engineering for Musculoskeletal Regeneration and Disease Model-ing. Handbook of experimental pharmacology, 265, 235–268. https://doi.org/10.1007/164_2020_377
Mammana, M., Bonis, A., Verzeletti, V., Dell’Amore, A., & Rea, F. (2024). Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering, 11(2), 198. https://doi.org/10.3390/bioengineering11020198
Mason, C., & Dunnill, P. (2007). A Brief Definition of Re-generative Medicine. Regenerative Medicine, 3(1), 1–5. https://doi.org/10.2217/17460751.3.1.1
Metcalfe, A. D., & Ferguson, M. W. (2007). Tissue engineer-ing of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Inter-face, 4(14), 413-437. https://doi.org/10.1098/rsif.2006.0179
Nerem, R. M. (2006). Tissue engineering: the hope, the hype, and the future. Tissue engineering, 12(5), 1143-1150. https://doi.org/10.1089/ten.2006.12.1143
Palsson, B. O., & Bhatia, S. N. (2004). Tissue engineering. 1st ed. Pearson Education, Inc., ISBN: 0-13-041696-7. Papaioannou, T. G., Manolesou, D., Dimakakos, E., Tsouca-las, G., Vavuranakis, M., & Tousoulis, D. (2019). 3D bioprinting methods and techniques: applications on ar-tificial blood vessel fabrication. Acta Cardiologica Si-nica, 35(3), 284. DOI: 10.6515/ACS.201905_35(3).20181115A
Park, S., Rahaman, K. A., Kim, Y. C., Jeon, H., & Han, H. S. (2024). Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioactive Materials, 40, 345-365. https://doi.org/10.1016/j.bioactmat.2024.06.022
Patrick Jr, C. W., Mikos, A. G., & McIntire, L. V. (1998). Prospectus of tissue engineering. In Frontiers in tissue engineering (pp. 3-11). Pergamon. https://doi.org/10.1016/B978-008042689-1/50003-0
Reddy, V. S., Ramasubramanian, B., Telrandhe, V. M., & Ramakrishna, S. (2023). Contemporary standpoint and future of 3D bioprinting in tissue/organs printing. Cur-rent Opinion in Biomedical Engineering, 27, 100461. https://doi.org/10.1016/j.cobme.2023.100461
Ronan, G., Bahcecioglu, G., Aliyev, N., & Zorlutuna, P. (2023). Engineering the cardiac tissue microenvironment. Progress in Biomedical Engineer-ing, 6(1), 012002. https://iopscience.iop.org/arti-cle/10.1088/2516-1091/ad0ea7
Rondón, J., Muñiz, C., Lugo, C., Farinas-Coronado, W., & Gonzalez-Lizardo, A. (2024). Bioethics in Bio-medical Engineering. Ciencia e Ingeniería. Vol, 45(2), 159-168. http://erevistas.saber.ula.ve/in-dex.php/cienciaeingenieria/article/view/19768/
Rondón, J., Vázquez, J., & Lugo, C. (2023). Biomaterials used in tissue engineering for the manufacture of scaffolds. Ciencia e Ingeniería, 44(3), 297-308. http://erevistas.saber.ula.ve/index.php/cien-ciaeingenieria/article/view/19221
Saini, G., Segaran, N., Mayer, J. L., Saini, A., Albadawi, H., & Oklu, R. (2021). Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. Jour-nal of clinical medicine, 10(21), 4966. https://doi.org/10.3390/jcm10214966
Scarritt, M. E., Pashos, N. C., & Bunnell, B. A. (2015). A review of cellularization strategies for tissue engineer-ing of whole organs. Frontiers in bioengineering and biotechnology, 3, 43. https://doi.org/10.3389/fbioe.2015.00043
Sefton, M. V. (2002). Functional considerations in tissue-en-gineering whole organs. Annals of the New York Acad-emy of Sciences, 961(1), 198-200. https://doi.org/10.1111/j.1749-6632.2002.tb03082.x
Shakir, S., Hackett, T. L., & Mostaço-Guidolin, L. B. (2022). Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaf-folds. Frontiers in bioengineering and biotechnol-ogy, 10, 1011800. https://doi.org/10.3389/fbioe.2022.1011800
Sipe, J. D., Kelley, C. A., & McNichol, L. A. (2002). Repar-ative medicine: growing tissues and organs. Annals of the New York Academy of Sciences. Print. https://onesearch.library.wwu.edu/permalink/01ALLI-ANCE_WWU/uejtld/alma9984269740001453
Viola, J., Lal, B., & Grad, O. (2003). The emergence of tissue engineering as a research field. National Science Foun-dation, Arlington, VA, 2-11. https://www.nsf.gov/pubs/2004/nsf0450/start.htm
Xu, X., Shen, Z., Shan, Y., Sun, F., Lu, Y., Zhu, J., Sun, Y., & Shi, H. (2023). Application of tissue engineering techniques in tracheal repair: a bibliometric study. Bio-engineered, 14(1), 2274150. https://doi.org/10.1080/21655979.2023.2274150
Zhang, L., Hu, J., & Athanasiou, K. A. (2009). The role of tissue engineering in articular cartilage repair and re-generation. Critical reviews in biomedical engineer-ing, 37(1-2), 1–57. https://doi.org/10.1615/critrevbio-medeng.v37.i1-2.10
Zhou, Z., Liu, J., Xiong, T., Liu, Y., Tuan, R. S., & Li, Z. A. (2024). Engineering Innervated Musculoskeletal tissues for regenerative orthopedics and Disease modeling. Small, 2310614.
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
![]() |
![]() | ![]() | ![]() | ![]() |