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Abstract 

The dynamics of kink-solitons in generalized Klein-Gordon equations for excitable media and spatial 

perturbations are investigated. A mechanism for kink-soliton explosion is presented, along with the 

analytically obtained conditions for the phenomena to happen. Computer simulations are used to visualize 

and corroborate the analytical findings. These findings can explain some of the phenomena that recently 

have been reported to occur in excitable media.  

Resumen 

Investigamos la dinámica de los kink-solitones de una ecuación generalizada de seno-Gordon, para un 

medio excitable y perturbado por fuerzas espaciales. Presentamos un mecanismo para la explosión del 

kink-solitón, además de una condición analítica que permite determinar si la explosión aparece. 

Simulaciones numéricas corroboran nuestros resultados analíticos. Estos resultados ayudan a explicar 

algunos de los fenómenos recientemente reportados en medios excitables.  

 



Excitable media are physical, chemical or biological systems in which besides energy dissipation, in some 

disturbed regions, there is energy supply (Zykov, 1988; Holden et al., 1991). These media can support 

wave motion without attenuation. Topological defects breakup have been observed in this systems 

(Barkley, 1992).  

Kink-solitons are the simplest examples of a general phenomenon called topological defects. This set of 

phenomena also includes: vortices and spirals (Cross and Hohenberg, 1993; Aranson and Kramer, 2002; 

Mello et al., 1998). Although these objects possess different origin and nature in different physical 

systems, they possess very similar dynamical properties (Cross and Hohenberg, 1993; Aranson and 

Kramer, 2002; Mello et al., 1998).  

Topological kink-solitons possess important applications in condensed matter physics (Kivshar and 

Malomed, 1989). Therefore, it is very important that we understand how the breakup/explosion happens.  

In the present communication we investigate excitable media systems described by the following 

generalized Klein-Gordon equations:  

  tt  R  t xx G   F x ,  (1)  

where G   dU  /d , U  is a potential function with at least two minima 1, 3 and a 

maximum 2, such that U 1 U 3  0, R  t  are nonlinear dissipative terms, and F(x) represents 

external perturbations. We are interested in topological kink-solitons between the points 1 and 3. The 

famous sine-Gordon and φ4-systems are particular cases of Eq. (1).  

We will present a mechanism for soliton explosions; and we will show that in some cases, while some 

conditions hold, the soliton explosion is permanent.  

In excitable media self-sustained dynamical patterns are possible. In this respect, all the media and 

physical systems with nonlinear damping, where self-sustained oscillations can exist, are very similar.  



Kink-soliton bearing excitable media systems as the following:  

  tt  R  t xx G   0,  (2)  

where d R  t /d t  is negative for small values of  t  and positive elsewhere, can support kinks moving 

with a constant velocity. An example of this kind of systems can be realized in practice using a Josephson 

junction transmission line where the resistor is a negative-resistance twin-tunnel-diode circuit or a twin-

transistor system (Chua et al., 1987). In this case, R  t  b t  a t
3 is a good model. 

From Eq. (2) we obtain that kinks that move without changes of shape and velocity correspond to 

solutions of the equation  

 zz  R wz  G   0,  (3)  

where z  x  vt / 1 v 2  and w  v / 1 v 2 , v being a velocity of the kink that satisfies the equation  

 R wz zdz  0




 . (4)  

Eq. (4) is satisfied by three values of the velocity v: v = 0, v = v1 > 0, and v = v2 = −v1 < 0. The velocity 

v = 0 is unstable.  

However, the solution is a kink-soliton only if function  

 V  U   R w 2U   




 d   (5)  

satisfies the condition V (φ) > 0 in the whole interval φ1 < φ < φ3. Suppose R(φt) possesses two local 

extrema: a maximum and a minimum such that the value of |R(φt)| at these extrema is Rm. If this value is 

comparable with the absolute value of the extrema of G(φ) (let us call it Gm) in the interval φ1 < φ < φ3, 

then the condition V(φ) > 0 may be not satisfied. In fact, if Rm > Gm this condition is certainly not 

satisfied. When this happens, the kink becomes a highly nonstationary state.  



If R(φt)= −bφt +aφt
3, then Rm  2

3b b /3a . So, for a given G(φ), and a fixed a, parameter b is the key. 

For small b, the kink can move smoothly with a constant velocity. For larger values of b, a big 

transformation will occur. This phenomenon can be observed in Figures 1(a) and 1(b).  

Another way to experiment negative damping is when the damping coefficient is a function of x:  

  tt  (x) t xx G   F x . (6)  

Where F(x) has a stable zero, say x = x0
�, the center of mass of a kink can perform damped oscillations 

around x0
�; and  is negative in a neighborhood of x0

� and positive elsewhere. This can be done in a 

chain of nonlinear oscillators using negative-resistance circuits (Chua et al., 1987) only in some small 

interval of the chain.  

An example of (x)  with the required features is (x)   1 Lsech2 Dx  , where (1 − L) < 0.  

If we are not careful, the kink can explode also in this system. In fact, if Γ(0) > Gm, then we can observe a 

very turbulent behavior as that shown in Fig. 2.  

The situations discussed in here, which lead to very complex spatiotemporal behaviors, start with soliton 

breakups after a Hopf bifurcation (see figures 1b and 2). These have already been documented in 

experiments (Barkley, 1992). We believe that this result shows that very similar phenomena can occur 

with kink-solitons in Klein-Gordon systems. We have been able to produce defect-mediated turbulence 

after a Hopf bifurcation generated by nonlinear damping.  

In Eq. (2) (with R(φt) = −bφt +aφt
3) the energy supply is described by the term −bφt. If coefficient b is 

very small, the defects are stable. However, if b is larger than a critical value, the kink-soliton breakup 

occurs. Our guess is that, in general in excitable systems, the physical elements that are responsible for 

the energy supply may also be responsible for some of the defect breakups.  



Many of the known results about excitable systems have been obtained by real and numerical 

experiments. Here we have presented an analytical theory of the breakup of Klein-Gordon solitons.  

We believe that our results can enlighten some of the still obscure phenomena that occur in excitable 

systems.  
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Figure 1: (a) Despite dissipation, Eq. (2) can sustain a kink with constant velocity due to negative 

resistance. Here G(φ)=(φ−φ3)/2, R (φt)= −bφt + aφt
3, a = 1, b =0.05. (b) Kink-soliton breakup due to 

nonlinear damping. If R (φt)= −bφt + aφt
3, and parameter b is larger that some critical value, the kink will 

explode. The parameters take the same values as in Fig. 1(a) but b =0.7.  



 

Figure 2: Highly nonstationary spatiotemporal dynamics produced by Eq. (6) if Γ(0) > Gm. Here Γ(x) = 1 

− l sech2(Bx), G(φ)=(φ − φ3)/2, F(x)= A tanh(Bx), l = 6, D = 0.65, A = 0.45, B = 0.65.  

 


