# Pedogénesis de una cronosecuencia de suelos en la región de Yaritagua y Guama, estado Yaracuy-Venezuela

Pedogenesis of a soils chronosequence in Yaritagua and Guama region, Yaracuy State-Venezuela

# González Orlando\*, Millán Zuly\*\* y Bezada Maximiliano\*

Recibido: febrero, 2007 / Aceptado: septiembre, 2007

#### Resumen

En la depresión de Yaracuy se analizaron algunas características pedológicas de una cronosecuencia de suelos, originada sobre abanicos aluviales depositados durante el período Cuaternario (Pleistoceno - Holoceno). Varias propiedades físicas se determinaron en el campo y en el laboratorio. En las propiedades químicas se determinó el pH, H<sub>2</sub>O, KCl y pH de abrasión, la CIC, %SB, carbonatos, CO y MO. Los resultados evidencian que existen diferencias significativas al 5% entre los distintos perfiles. Sólo algunas propiedades pedológicas tienden a cambiar con la edad de la cronosecuencia. En conclusión, algunas propiedades indican una cierta tendencia a cambiar uni-direccionalmente con relación al grado de desarrollo del suelo y la edad de la superficie geomorfológica asociada. Estos resultados no son concluyentes con respecto a las edades asignadas por otros investigadores a estos abanicos aluviales de la depresión de Yaracuy.

*Palabras clave*: Depresión de Yaracuy; cuaternario; abanicos aluviales; cronosecuencia de suelos; características pedológicas.

#### Abstract

In the Yaracuy depression, some pedological features of a chronosequence of soils that were developed over alluvial fans of quaternary age (Pleistocene – Holocene), were analyzed. Several physical properties were determined in the field and in the laboratory. The chemical parameters obtained in the laboratory were pH, abrasion pH, the CEC, the % of BS, the carbonates, the organic carbon and the organic matter. The results showed significant differences at 5% among the profiles of the soils analyzed. We conclude that only some features showed some tendency to change un-directionally in relation with the soil developed and the age of the geomorphic surfaces of the chrono-sequence. These results do not support the ages previously assigned by others researches to these alluvial fans on the Yaracuy depression.

**Key words**: Yaracuy depression; quaternary; alluvial fans; soils chrono-sequence; pedological features.

<sup>\*</sup> Universidad Pedagógica Experimental Libertador, Instituto Pedagógico de Caracas, Departamento de Ciencias de la Tierra, Núcleo de Investigación Estudios del Medio Físico Venezolano, e-mail: orlandojose57@yahoo.com.mx; mbezada@cantv.net

<sup>\*\*</sup> Universidad Pedagógica Experimental Libertador, Instituto Pedagógico de Caracas, Departamento de Matemáticas y Física, Núcleo de Investigación Estudios del Medio Físico Venezolano, e-mail: zumibo2@yahoo.com

## 1. Introducción

Los primeros intentos para tratar de establecer un vínculo entre los estudios pedológicos y la evolución del paisaje, probablemente se iniciaron con los trabajos de Ruhe (1956) y Ruhe y Scholtes (1956), en la región de Iowa, Estados Unidos, donde estos investigadores sugirieron una asociación entre las superficies geomorfológicas y los suelos desarrollados sobre dichas superficies. El rápido crecimiento en el uso de los suelos para el estudio de la evolución de diferentes geoformas derivó del hecho de que los suelos forman una parte esencial de todos los elementos de éste y todas las superficies geomorfológicas; es por esto que la historia de la evolución del paisaie está íntimamente vinculada con la historia del desarrollo del suelo (McFadden y Knuepfer, 1990).

Un concepto clave para el estudio de las relaciones geomorfología-suelos, se ha basado en el modelo de las cronosecuencias. En este sentido, una cronosecuencia ha sido definida como una secuencia de suelos relacionados que difieren unos con otros en ciertas propiedades: 1) como resultado del tiempo y, 2) como resultado del desarrollo de materiales parentales y relieves similares, bajo la influencia de constantes variaciones climáticas y factores bióticos (Stevens y Walter, 1970). Por su parte, Wreeken (1975), reconoció cuatro clases de cronosecuencias basado en las relaciones suelo y depósitos cuaternarios. Estas clases son: las cronosecuencias post-incisivas, las preincisivas, las tiempo transgresivas sin superposición histórica y, las tiempo-transgresivas con superposición histórica.

El estudio de las cronosecuencias ha contribuido mucho en el entendimiento de los procesos geomorfológicos y la evolución del paisaje. En ese sentido, se han realizado varias investigaciones a nivel internacional, destacándose las de: Busacca (1987); Harrison et al. (1990); Howard et al. (1993); Alonso et al. (1994); Roquero et al. (1997); Vidic y Lobnick (1997) Ortiz et al. (2000) e Igwe et al. (2005). En Venezuela, el uso de criterios pedológicos se ha utilizado como un instrumento para datar relativamente secuencias de terrazas cuaternarias, lo cual se inició con los trabajos pioneros de Vivas (1970) y Zinck y Urriola (1970). Esta metodología fue evaluada por Bezada y Schubert (1987), quienes demostraron que los parámetros pedológicos no pueden utilizarse para validar una cronología cuaternaria asignada a priori. Sin embargo, esta metodología puede utilizarse para caracterizar el mayor o menor grado de evolución del perfil en función del tiempo, siempre y cuando la toposecuencia tenga un mismo material parental de origen. Con este criterio, esta aproximación cronológica ha sido utilizada en diversas investigaciones realizadas en el país, tales como la de Malagón (1979, 1982); Ochoa y Malagón (1980); Bezada (1990); González (1995); Gil (1996), Torres (2000); Godoy (2000); González v Bezada (2001); Colmenares (2002); Pastrán (2005) y González (2006).

El propósito de esta investigación es demostrar estadísticamente si los parámetros pedológicos de esta secuencia de suelos desarrollados sobre abanicos aluviales de diferente edad, varían efectivamente con el grado y desarrollo del perfil.

# 2. Área de estudio

La región de estudio se localiza en las depresiones de Barquisimeto y Yaracuy, entre las poblaciones de Yaritagua y Guama. Sus coordenadas geográficas son las siguientes: 10°05′20" y 10°06′45" de latitud norte y 69°02′10" y 69°22′40" de longitud oeste (Figura 1). Desde el punto de vista de relieve, esta región se caracteriza por la presencia de un área montañosa de topografía abrupta y pendientes superiores al 30%, con alturas que oscilan entre 600 msnm y 1700 msnm; y un área de topografía relativamente suave constituida por los abanicos aluviales con alturas comprendidas entre 200 msnm y 600 msnm, y pendientes que varían entre 4 y 6% aproximadamente.

Desde el punto de vista geomorfológico, el área de estudio está constituida fundamentalmente, por las quebradas El Salto, Los Santos, Urachiche, La Grande, Poa Poa y Guama. Las cuencas altas comprenden el sector montañoso y se caracterizan por la presencia de alteritas provenientes de la meteorización química de los afloramientos rocosos; por los movimientos de masa originados por los procesos de reptación y escurrimiento difuso (COPLANARH, 1975); y por otras evidencias geomorfológicas asociadas a la actividad neotectónica, tales como lagunas de falla, lomos de falla, drenajes

desplazados, crestas de fallas lineales y facetas triangulares (Schubert, 1982; Giraldo, 1985; Casas Sainz, 1995; González, 2006). Mientras que las cuencas medias y bajas se caracterizan por la presencia de abanicos aluviales coalescentes fuertemente disectados por la red de drenaje superficial, y que también han sido afectados por la actividad neotectónica antes mencionada (Figura 2).

Geológicamente, la región de estudio está conformada por rocas de edad Mesozoico y por sedimentos de edad Cuaternario. Las rocas de edad Mesozoico se relacionan con la Formación Las Brisas, la cual está constituida de manera general por esquistos cuarzo-micáceos-feldespáticos, esquistos gnéisicos y gneises cuarzo feldespáticos y por la Formación Nirgua que se compone esencialmente de esquistos cuarzo-micáceos, esquistos grafitosos, calizas, anfibolitas y mármoles (Bellizia y Rodríguez, 1968, 1976). Por su parte, los depósitos cuaternarios se caracterizan por la presencia de abanicos aluviales coalescentes, originados por la combinación de procesos asociados a flujos de detritus y transporte por corriente (Casas-Sainz, 1995; González, 2006). En cuanto a su composición, estos depósitos están constituidos principalmente por capas de conglomerados, gravas, arenas y capas de calcrete de origen carbonático. Estos depósitos, de acuerdo a su grado de meteorización, han sido asignados dentro del período Cuaternario al Pleistoceno Temprano, Medio y Superior y al Holoceno (COPLANARH, 1975; Giraldo, 1985; Casas-Sainz, 1995).

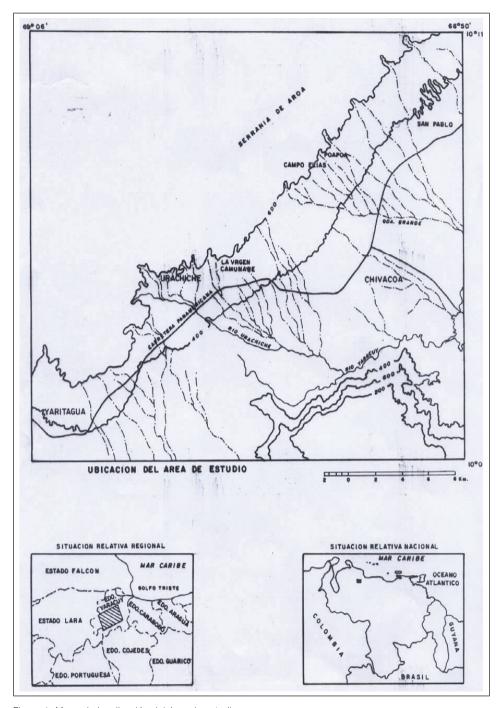



Figura 1. Mapa de localización del área de estudio

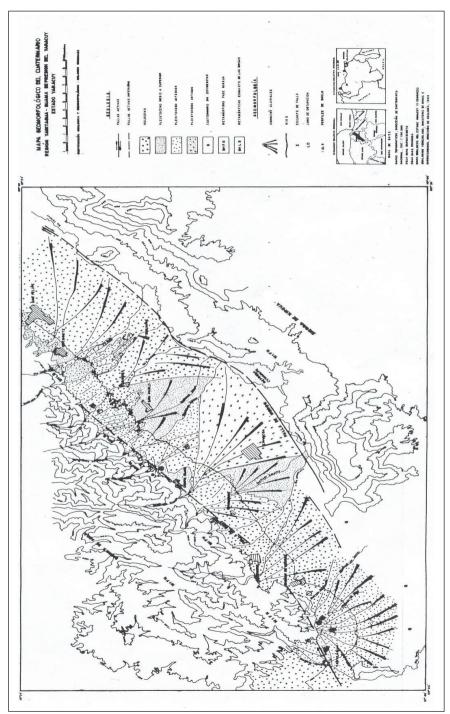



Figura 2. Mapa geomorfológico del Cuaternario de la región Yaritagua-Guama, estado Yaracuy-Venezuela

# 3. Materiales y métodos

La metodología empleada en este estudio consistió en combinar técnicas documentales, de campo y de laboratorio. Se revisaron los mapas topográficos a escala 1:100000, de la región de Barquisimeto de 1976 (hoja 6346); el mapa de Chivacoa de 1977 (hoja 6446); el mapa geológico del estado Yaracuy (Bellizia et al., 1969) y el mapa de vegetación de Hubber y Alarcón (1988). La fotointerpretación se realizó con la misión 021106 del año 1975, a escala 1:50000 (fotos 788 a 790, 810 y 811), que cubre la región de Campo Elías-Guama y las fotografías 1502 a 1505, de la misma misión, que abarcan la región de Yaritagua-Las Piedras.

La fase de campo se realizó entre los años 2003 y 2005, durante la cual se realizaron seis salidas de campo para levantar los nueve (9) perfiles de suelo, así como la determinación de los horizontes siguiendo la metodología propuesta por Birkeland y otros (1991) y Birkeland (1999). La descripción de las propiedades físicas (estructura, consistencia, plasticidad y compacidad) de los perfiles se realizó según Ospina y Viloria (2000). El color se estableció según la tabla Munsell de colores (1990). La ubicación de los perfiles de acuerdo a su edad relativa (más joven a más antiguo) se observan en el cuadro 1.

En laboratorio se determinó el tamaño de las partículas para la fracción fina, menor de 2 mm, por el método de Bouyoucos (1962). En los análisis químicos se determinaron el pH en agua y KCl con un pH-Metro (Metrohm modelo E-588) en una relación 1:1 (Jackson, 1964); el pH de abrasión según Grant (1969). Los cationes alcalinos de cambio (Ca, Na, K, y Mg), la CIC y el porcentaje de saturación de bases se realizaron de acuerdo a Jackson (1964). El carbono orgánico (CO) y la materia orgánica (MO) se determinaron por el método clásico de Walkley y Black (1974). Los carbonatos se determinaron mediante el método de Molnia y Pilkey (1971).

Los datos de las propiedades físicas y químicas de los suelos fueron procesados en el paquete estadístico SPSS versión 12 para Windows. Los resultados se presentan en cuadros y gráficos estadísticos. Se hicieron análisis estadísticos descriptivos por perfiles tanto univariantes a través de las medidas de tendencia central y de dispersión, así como el análisis bivariante de correlación lineal para establecer relaciones estadísticas entre algunas propiedades físicas y químicas y la edad relativa de los suelos. Para analizar las diferencias significativas entre las propiedades de los distintos perfiles y su edad, se aplicaron técnicas inferenciales relacionadas con el análisis de varianza de una sola vía (ANOVA one-way), y la prueba de independencia a través de x2, con una significancia  $\alpha$ = 0,05. Por último, se aplicó la técnica de análisis multivariante de componentes principales (ACP) para explorar los factores que pueden estar explicando la variabilidad de las propiedades según la edad relativa.

Cuadro 1. Ubicación de los perfiles en el área de estudio

| Perfil               | Horizonte | Profundidad<br>(cm)                | Color de acuerdo a la tabla Munsell | Ubicación del perfil                   | Altura<br>(msnm) |
|----------------------|-----------|------------------------------------|-------------------------------------|----------------------------------------|------------------|
|                      | Ap1       | 0 - 27                             | Marrón grisáceo 10YR 5/2            |                                        |                  |
| Mayuruní             | Ap2       | 27 - 50                            | Marrón gris claro 2,5Y 6/2          | Abanico Las Piedras                    | 580              |
| Mayurupí             | Cu1       | 50 - 75 Marrón gris claro 2,5Y 6/2 |                                     | ADAIIICO LAS Piedras                   | 380              |
|                      | Cu2       | 75 - 110                           | Marrón claro gris 10YR 6/2          |                                        |                  |
|                      | Ap1       | 0 - 30                             | Marrón oscuro 10YR 4/3              |                                        |                  |
|                      | Ap2       | 30 - 40                            | Marrón oscuro 10YR 4/3              | T                                      |                  |
| Teteiba              | Ap3       |                                    |                                     | Abanico Campo Elías, Ouebrada Grande   | 360              |
|                      | Cu1       |                                    |                                     | Queblada dialide                       |                  |
|                      | Cu2       | 62 - 100                           | Marrón 10YR 5/3                     |                                        |                  |
|                      | Ap1       | 0 - 12                             | Marrón 10YR 5/3                     |                                        |                  |
| El Salto             | Ap2       | 12 - 45                            | Marrón amarillento 10YR 5/4         | Hacienda El Salto                      | 520              |
|                      | Cox       | 45 - 80                            | Marrón amarillento 10YR 5/4         |                                        |                  |
|                      | Ap1       | 0 - 16                             | Marrón oscuro 10YR 4/3              |                                        |                  |
|                      | Bw1       | 16 - 42                            | Marrón fuerte 7,5YR 4/6             | 1                                      | 560              |
| Poa-Poa              | Bw2       | 42 - 67                            | Marrón fuerte 7,5YR 4/6             | Hacienda La Mariposa                   |                  |
|                      | Bw3       | 67 - 93                            | Marrón grisáceo 10YR 5/2            | 7                                      |                  |
|                      | Ар        | 0 - 10                             | Marrón oscuro 7,5YR 3/4             |                                        |                  |
|                      | Cox1      | 10 - 57                            | Marrón fuerte 7,5YR 4/6             | Sector La Cuña entre Yarita-           |                  |
| La Cuña              | Cox2      | 57 - 77                            | Marrón amarillento 10YR 5/4         | gua y Las Piedras                      | 560              |
|                      | Cox3      | 77- 88                             | Marrón amarillento 10YR 5/4         |                                        |                  |
|                      | Ар        | 0 - 13                             | Marrón fuerte 7,5YR 5/6             |                                        |                  |
|                      | Cox1      | 13 - 25                            | Marrón fuerte 7,5YR 5/6             | 7                                      | 470              |
| Quebrada<br>El Salto | Cox2      | 25 - 38                            | Marrón fuerte 7, <u>5YR</u> 5/6     | Noreste de la población de<br>El Salto |                  |
| EI Jailo             | Cox3      | 38 - 65                            | Rojo amarillento 5YR 5/8            | El Sallo                               |                  |
|                      | Cox4      | 65 - 84                            | Rojo amarillento 5YR 5/8            |                                        |                  |
|                      | Α         | 0 - 14                             | Amarillo rojizo 7,5YR 6/8           |                                        |                  |
|                      | Bw        | 14 - 47                            | Marrón amarillento 10YR 5/4         | Abanico Aluvial, margen                |                  |
| Guama 1              | Cox1      | 47 - 67                            | Marrón amarillento 10YR 5/4         | derecha del río Guama                  | 380              |
|                      | Cox2      | 67 - 100                           | Marrón oscuro 10YR 4/3              |                                        |                  |
|                      | Ap1       | 0 - 12                             | Marrón oscuro 10YR 4/3              |                                        |                  |
|                      | Ap2       | 12 - 36                            | Marrón oscuro 10YR 4/3              |                                        |                  |
|                      | Bt1       | 36 - 55                            | Rojo amarillento 5YR 5/8            | 1                                      |                  |
| Paradero             | Bt2       | 55 - 82                            | Rojo amarillento 5YR 5/8            | Abanico de Yaritagua                   | 480              |
|                      | Bt3       | 82 - 120                           | Rojo amarillento 5YR 5/8            | 7                                      |                  |
|                      | Bt4       | 120 - 133                          | Rojo amarillento 5YR 5/8            | 7                                      |                  |
|                      | A         | 0 -20                              | Gris marrón claro 2,5Y 6/2          |                                        |                  |
| _                    | Cox1      | 20 - 42                            | Marrón muy pálido 10YR 7/4          | —<br>Abanico Aluvial, margen           | _                |
| Guama 2              | Cox2      | 42 - 75                            | Marrón muy pálido 10YR 7/4          | izquierda del río Guama                | 507              |
|                      | Cox3      | 75 - 115                           | Marrón muy pálido 10YR 7/4          | 7                                      |                  |

# 4. Análisis de resultados y discusión

# 4.1 Caracterización físico-química de los suelos

Los resultados con respecto a algunas propiedades físicas cualitativas de los 9 suelos estudiados, se presentan en el cuadro 2. El análisis estadístico de estas propiedades muestra una relación estadística significativa al 5% ( $\chi^2$ ; p=0.000) entre la edad relativa de los suelos y la estructura, friabilidad, adhesividad, plasticidad v compacidad (se exceptúa la dureza). Los perfiles más jóvenes tienden a presentar estructuras granulares; una friabilidad suelta, no adhesivos y no plásticos; poco compactos o no coherentes. Al parecer la textura de estos suelos viene a ser el factor que más influye en todas estas propiedades, ya que en su mayoría tienden a ser de textura franco arenosa.

En general, los horizontes varían desde los colores grises (2,5Y 6/2) hasta el marrón fuerte (7,5YR 4/6), (Cuadro 3). Usada con precaución, esta propiedad física permite reconocer cualitativamente los materiales de los horizontes del suelo y los procesos que han venido operando en éste (Bigham y Ciolkosz, 1993; citado por Birkeland, 1999). Los colores grises están asociados con los perfiles que teóricamente son de edad Holoceno o más jóvenes (Mayurupí y Teteiba). El color de estos suelos parece estar íntimamente relacionado con el material parental que les dio origen, ligados a la Formación Nirgua y, específicamente, con los esquistos micáceos de color gris y las calizas metamorfizadas que afloran en las cuencas altas de las quebradas Los Santos y Grande.

Otros autores también han reportado, en estudios pedogenéticos en los Andes centrales venezolanos, que el color de esos suelos probablemente es heredado del material parental (Malagón, 1982; Bezada y Schubert, 1987; Bezada, 1990; González, 1995; Velásquez et al., 1997; Rondón et al., 1997; González y Bezada, 2001; Pastrán, 2005). Los suelos asociados con superficies geomorfológicas de edad Pleistoceno Tardío a Holoceno (El Salto, Poa-Poa y La Cuña), se caracterizan por la presencia de colores marrón amarillento a marrón oscuro, coloraciones que en general se relacionan con la presencia de óxidos de hierro en el suelo, los cuales resultan de la alteración de los minerales de las rocas que constituyen su material parental. Con base a lo señalado en la literatura, la coloración de estos suelos probablemente se deba a la presencia del mineral goetita, característico de las regiones subtropicales y tropicales (Torrent et al., 1983; Schwermann y Taylor, 1989), los cuales bajo ciertas condiciones ambientales pueden indicar algún grado de meteorización o pedogénesis. En los suelos más antiguos, el color dominante es el marrón fuerte y el marrón amarillento. Estadísticamente se encontró una relación significativa (p < 0.01 para  $\chi^2$ ) entre el color de los suelos y su edad relativa.

La distribución de tamaño de partículas por edad relativa del suelo aparece en el cuadro 4. Existen diferencias significativas entre los porcentajes promedios de arena por edad relativa del perfil, encontrándose que los suelos más jóvenes poseen los mayores porcentajes promedios de arena (p = 0.016). Los pro-

Cuadro 2. Propiedades físicas cualitativas de los suelos estudiados

|                      |           | Profundidad | _          |             | Consistencia                   | Plasticidad   |               |               |  |
|----------------------|-----------|-------------|------------|-------------|--------------------------------|---------------|---------------|---------------|--|
| Perfil               | Horizonte | (cm)        | Estructura | Dureza      | Dureza Friabilidad Adhesividad |               |               | Compacidad    |  |
|                      | Ap1       | 0 - 27      | Subangular | Suelta      | Muy Friable                    | No adhesiva   | Mod. plástica | Poco compacta |  |
| . ,                  | Ap2       | 27 - 50     | Subangular | Suelta      | Muy Friable                    | No adhesiva   | Mod. plástica | Poco compacta |  |
| Mayurupí             | Cu1       | 50 - 75     | Subangular | Blanda      | Suelta                         | No adhesiva   | No plástica   | No coherente  |  |
|                      | Cu2       | 75 - 110    | Subangular | Blanda      | Suelta                         | No adhesiva   | No plástica   | No coherente  |  |
|                      | Ap1       | 0 - 30      | Granular   | Blanda      | Suelta                         | No adhesiva   | No plástica   | No coherente  |  |
|                      | Ap2       | 30 - 40     | Granular   | Blanda      | Suelta                         | No adhesiva   | No plástica   | Poco compacta |  |
| Teteiba              | Ap3       | 40 - 50     | Granular   | Blanda      | Suelta                         | No adhesiva   | No plástica   | Poco compacta |  |
|                      | Cu1       | 50 - 62     | Granular   | Blanda      | Suelta                         | No adhesiva   | No plástica   | Poco compacta |  |
|                      | Cu2       | 62 - 100    | Granular   | Blanda      | Suelta                         | No adhesiva   | No plástica   | Poco compacta |  |
|                      | Ap1       | 0 - 12      | Subangular | Blanda      | Muy Friable                    | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
| El Salto             | Ap2       | 12 - 45     | Subangular | Blanda      | Muy Friable                    | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
|                      | Cox       | 45 - 80     | Subangular | Blanda      | Muy Friable                    | Lig. adhesiva | Mod. plástica | Poco compacta |  |
|                      | Ap1       | 0 - 16      | Subangular | Blanda      | Friable                        | No adhesiva   | Lig. plástica | Poco compacta |  |
| D D                  | Bw1       | 16 - 42     | Subangular | Blanda      | Friable                        | Lig. adhesiva | Lig. plástica | Poco compacta |  |
| Poa-Poa              | Bw2       | 42 - 67     | Subangular | Blanda      | Friable                        | Lig. adhesiva | Muy plástica  | Mod. compacta |  |
|                      | Bw3       | 67 - 93     | Subangular | Lig. Blanda | Friable                        | Lig. adhesiva | Muy plástica  | Mod. compacta |  |
|                      | Ар        | 0 - 10      | Subangular | Lig. Dura   | Muy Friable                    | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
| La Cuña              | Cox1      | 10 - 57     | Subangular | Lig. Dura   | Friable                        | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
| La Culla             | Cox2      | 57 - 77     | Subangular | Dura        | Muy Firme                      | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
|                      | Cox3      | 77- 88      | Granular   | Dura        | Muy Firme                      | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
|                      | Ар        | 0 - 13      | Subangular | Blanda      | Muy Friable                    | Lig. adhesiva | Lig. plástica | No coherente  |  |
|                      | Cox1      | 13 - 25     | Subangular | Mod. Dura   | Muy Friable                    | Lig. adhesiva | Mod plástica  | Mod. compacta |  |
| Quebrada<br>El Salto | Cox2      | 25 - 38     | Subangular | Mod. Dura   | Muy Friable                    | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
|                      | Cox3      | 38 - 65     | Subangular | Mod. Dura   | Muy Friable                    | Lig. adhesiva | Lig. plástica | Muy compacta  |  |
|                      | Cox4      | 65 - 84     | Subangular | Mod. Dura   | Muy Friable                    | Lig. adhesiva | Lig. plástica | Mod. compacta |  |
|                      | А         | 0 - 14      | Subangular | Blanda      | Muy Friable                    | No adhesiva   | No plástica   | No coherente  |  |
|                      | Bw        | 14 - 47     | Subangular | Blanda      | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
| Guama 1              | Cox1      | 47 - 67     | Subangular | Blanda      | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | Cox2      | 67 - 100    | Subangular | Blanda      | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | Ap1       | 0 - 12      | Granular   | Suelta      | Suelta                         | No adhesiva   | No plástica   | Mod. compacta |  |
|                      | Ap2       | 12 - 36     | Angular    | Suelta      | Suelta                         | No adhesiva   | No plástica   | Mod. compacta |  |
| Paradero             | Bt1       | 36 - 55     | Angular    | Blanda      | Muy Friable                    | No adhesiva   | No plástica   | Mod. compacta |  |
| raradero             | Bt2       | 55 - 82     | Angular    | Dura        | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | Bt3       | 82 - 120    | Angular    | Muy Dura    | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | Bt4       | 120 - 133   | Angular    | Muy Dura    | Muy Friable                    | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | А         | 0 -20       | Angular    | Dura        | Friable                        | No adhesiva   | No plástica   | Muy compacta  |  |
| Cuama 3              | Cox1      | 20 - 42     | Angular    | Muy Dura    | Friable                        | No adhesiva   | No plástica   | Muy compacta  |  |
| Guama 2              | Cox2      | 42 - 75     | Angular    | Muy Dura    | Friable                        | No adhesiva   | No plástica   | Muy compacta  |  |
|                      | Cox3      | 75 - 115    | Angular    | Muy Dura    | Friable                        | No adhesiva   | No plástica   | Muy compacta  |  |

Cuadro 3. Relación edad y color del suelo

|                                             | Color del suelo           |                                        |                               |                      |       |  |  |
|---------------------------------------------|---------------------------|----------------------------------------|-------------------------------|----------------------|-------|--|--|
| Edad                                        | Marrón fuerte u<br>oscuro | Marrón claro grisáceo u<br>oliva claro | Marrón amarillento<br>o claro | Gris marrón<br>claro | Total |  |  |
| Joven (Holoceno)                            | 3 4                       |                                        | 0                             | 2                    | 9     |  |  |
| Medianamente joven<br>(Pleistoceno Tardío?) | 5                         | 0                                      | 6                             | 0                    | 11    |  |  |
| Viejo<br>(Pleistoceno Temprano?)            | 8                         | 1                                      | 9                             | 1                    | 19    |  |  |
| Total                                       | 16                        | 5                                      | 15                            | 3                    | 39    |  |  |

Cuadro 4. Estadísticas descriptivas del porcentaje de arena, limo y arcilla según edad relativa de los suelos

| Propiedad<br>Física | Edad relativa del suelo | N  | Media   | Desviación típica | Mínimo | Máximo |
|---------------------|-------------------------|----|---------|-------------------|--------|--------|
|                     | Joven                   | 9  | 66,9733 | 13,45313          | 48,22  | 82,14  |
| % de Arena          | Medianamente joven      | 11 | 51,7636 | 10,79888          | 36,90  | 64,12  |
| % de Arena          | Viejo                   | 19 | 53,1789 | 12,81444          | 34,98  | 84,12  |
|                     | Total                   | 39 | 55,9631 | 13,57448          | 34,98  | 84,12  |
|                     | Joven                   | 9  | 32,4633 | 12,67780          | 17,86  | 50,50  |
| % de Limo           | Medianamente joven      | 11 | 42,2518 | 8,86041           | 31,98  | 62,91  |
| % de Lillo          | Viejo                   | 19 | 39,8153 | 10,47054          | 15,88  | 62,68  |
|                     | Total                   | 39 | 38,8059 | 10,94999          | 15,88  | 62,91  |
|                     | Joven                   | 9  | ,5633   | 1,13464           | ,00    | 3,38   |
| % de Arcilla        | Medianamente joven      | 11 | 5,9845  | 6,04671           | ,19    | 18,83  |
| % ue Arcilla        | Viejo                   | 19 | 7,0058  | 8,52677           | ,00    | 25,87  |
|                     | Total                   | 39 | 5,2310  | 7,15764           | ,00    | 25,87  |

medios entre los suelos medianamente evolucionados y los suelos viejos son relativamente similares, pero al compararlos con los jóvenes estos promedios son superiores significativamente (p = 0.026 <  $\alpha = 0.05$ ); por su parte, el porcentaje de limo no permite evidenciar diferencias entre los suelos; no obstante, son los sue-

los medianamente meteorizados los que mayor porcentaje de limo poseen. El porcentaje de arcilla aumenta en la medida que los suelos están más meteorizados, los suelos más jóvenes apenas alcanzan el promedio del 1% de arcilla y los más antiguos el 7%. La diferencia significativa fue del 8% entre los grupos, pero no

permite establecer que en este caso sea un factor de diferenciación de los suelos según su edad relativa, en parte debido a la composición mineralógica del material parental. En otras investigaciones de cronosecuencias, el incremento de los porcentajes de arcilla con la edad ha resultado ser un buen índice de meteorización para separar cronológicamente los suelos y los depósitos asociados (Alexander y Holowaychuk, 1983; Vidic et al., 1991; Dawson et al., 1991; Howard et al., 1993; Roquero et al., 1997).

Los resultados de las distintas propiedades químicas de los suelos analizados en esta investigación se presentan en el cuadro 5. La reacción de los suelos con respecto al pH en H<sub>2</sub>O de los 9 perfiles estudiados oscilan entre 5,45 y 8,14 y la media total es de 7,03 con una S= 0,84, lo cual indica que los suelos se encuentran en niveles que van desde relativamente ácido hasta el básico. El comportamiento de los valores promedios de pH en H<sub>o</sub>O en los perfiles indica una cierta tendencia a ir disminuvendo a medida que el suelo muestreado representa una vejez relativa mayor, excepto en los casos de los perfiles La Cuña y Paradero, que presentan valores promedios de pH mucho mayores de lo esperado para su edad relativa. Resultados similares han sido reportados en otras investigaciones (Bockheim, 1980; Alexander y Holowaychuk, 1983; Bain et al., 1993; VandenBygaart y Protz, 1994; Vidic y Lobnick, 1997; Roquero et al., 1997; Bellinfante et al., 1998). En términos de acidez de los suelos, se encontraron valores promedios que distinguen a los suelos relativamente más evolucionados de los recientes y esto se observa con más claridad en el pH en KCl que en el caso del pH en H<sub>2</sub>O (Figura 3).

El pH de abrasión también permite distinguir los perfiles si se comparan los valores de sus medias con la media total. Partiendo que este pH es un índice relativo de meteorización (Grant, 1969; Ferrari y Magaldi, 1983) se pudo caracterizar a estos suelos en dos subgrupos de edad relativa, según la tendencia que también han presentado los índices anteriores; es decir, a menor valor de pH mayor vejez del suelo y viceversa. El caso de los perfiles La Cuña y Paradero se mantiene fuera de lo esperado según su edad relativa, en éste último perfil asociado a una superficie geomorfológica supuestamente del Pleistoceno Temprano (COPLANARH, 1975; Giraldo, 1985; Casas Sainz, 1995), ya que el análisis de sus resultados muestra características de un suelo mucho más joven, posiblemente inducido por procesos de recalcificación de este depósito.

Si se observa la figura 4 en la que se presenta la relación que existe entre los valores de pH H<sub>2</sub>O y el pH abrasión (r = 0,97), se encontrará una fuerte relación lineal directa, lo que indica que aquellos suelos con valores de pH abrasión menores se acompañan con valores bajos de pH H<sub>o</sub>O y a medida que aumenta el valor de pH de abrasión, el suelo presenta los valores más altos de pH H<sub>2</sub>O. Así mismo, esta relación muestra con más claridad como los suelos más meteorizados están relacionados con los valores más bajos de pH, y aquellos perfiles medianamente y poco meteorizados se relacionan con los valores más altos de pH.

Cuadro 5. Resultados de propiedades químicas de los suelos estudiados

| Perfil            | Horizonte | Profun-<br>didad | pH H <sub>2</sub> O | pH KCI | ΔрН   | pH Ab | %<br>CaCO <sub>3</sub> | Na   | Ca    | К    | Mg   | CIC  | SB   | СО   | МО   |
|-------------------|-----------|------------------|---------------------|--------|-------|-------|------------------------|------|-------|------|------|------|------|------|------|
|                   | Ap1       | 0 - 27           | 7,39                | 7,18   | -0,21 | 7,53  | 1,08                   | 0,14 | 5,87  | 0,22 | 0,07 | 10   | 6,93 | 1.2  | 2.06 |
| Mayurupí          | Ap2       | 27 - 50          | 7,6                 | 7,28   | -0,32 | 7,68  | 1,08                   | 0,07 | 7,07  | 0,29 | 0,07 | 8,6  | 8,24 | 1.44 | 2.48 |
|                   | Cu1       | 50 - 75          | 7,97                | 7,88   | -0,09 | 7,99  | 3,5                    | 0,07 | 13,49 | 0,15 | 0,07 | 2,2  | 16,9 | 0.17 | 0.29 |
|                   | Cu2       | 75 -110          | 8,07                | 7,94   | -0,13 | 8,11  | 4,91                   | 0,05 | 14,09 | 0,08 | 0,46 | 1,6  | 43,4 | 0.41 | 0.70 |
|                   | Ap1       | 0 - 30           | 6,7                 | 6,82   | 0,12  | 7,21  | 0                      | 0,07 | 3,19  | 0,28 | 0,13 | 6,7  | 5,48 | 0.61 | 1.05 |
| g e               | Ap2       | 30 - 40          | 7,28                | 7,23   | -0,05 | 7,61  | 0                      | 0,07 | 2,59  | 0,11 | 0,07 | 3,9  | 4,56 | 1.13 | 1.94 |
| Teteiba           | Ap3       | 40 - 50          | 7,58                | 7,52   | -0,06 | 7,72  | 0                      | 0,05 | 5,03  | 0,18 | 0,07 | 3,5  | 7,26 | 1.02 | 1.75 |
| -                 | Cu1       | 50 - 62          | 7,86                | 7,81   | -0,05 | 8,07  | 4,58                   | 0,07 | 13,47 | 0,08 | 0,07 | 1,2  | 19,5 | 0.70 | 1.20 |
|                   | Cu2       | 62 -100          | 7,92                | 7,83   | -0,09 | 8,17  | 5,33                   | 0,05 | 15,33 | 0,1  | 0,07 | 1,4  | 20,5 | 0.70 | 1.20 |
| 0.                | Ap1       | 0 - 12           | 7,53                | 7,35   | -0,18 | 7,49  | 1,16                   | 0,05 | 9,08  | 0,3  | 0,13 | 5,3  | 11,9 | 0.85 | 1.46 |
| El Salto          | Ap2       | 12 - 45          | 7,69                | 7,32   | -0,37 | 7,57  | 1,00                   | 0,05 | 4,03  | 0,15 | 0,1  | 6,5  | 5,76 | 0.87 | 1.49 |
|                   | Cox       | 45 - 80          | 7,77                | 7,41   | -0,36 | 7,68  | 1,00                   | 0,07 | 8,8   | 0,17 | 0,1  | 7,2  | 10,4 | 0.55 | 0.94 |
|                   | Ap1       | 0 - 16           | 6,69                | 6,08   | -0,61 | 6,68  | 1,75                   | 0,07 | 3,21  | 0,16 | 0,33 | 7,5  | 7,84 | 1.64 | 2.82 |
| Poa-Poa           | Bw1       | 16 - 42          | 7,39                | 6,75   | -0,64 | 7,23  | 1,66                   | 0,05 | 3,19  | 0,16 | 0,36 | 7,9  | 7,95 | 0.88 | 1.51 |
| Poa               | Bw2       | 42 - 67          | 7,19                | 6,32   | -0,87 | 7,18  | 1,75                   | 0,07 | 2,46  | 0,18 | 0,33 | 8,3  | 6,68 | 0.42 | 0.72 |
|                   | Bw3       | 67 - 93          | 6,89                | 6,03   | -0,86 | 6,91  | 0,91                   | 0,07 | 2,51  | 0,16 | 0,13 | 7,7  | 2,75 | 0.41 | 0.70 |
|                   | Ар        | 0 - 10           | 7,60                | 7,27   | -0,33 | 7,29  | 1,80                   | 0,09 | 8,44  | 0,15 | 0,1  | 9,9  | 9,69 | 1.44 | 2.48 |
| La Cuña           | Cox1      | 10 - 57          | 7,85                | 7,45   | -0,4  | 7,76  | 2,50                   | 0,05 | 15,65 | 0,1  | 0,07 | 9,6  | 16,5 | 0.66 | 1.13 |
| La (              | Cox2      | 57 - 77          | 8,05                | 7,66   | -0,39 | 8,04  | 4,16                   | 0,05 | 16,73 | 0,46 | 0,07 | 4,3  | 18,9 | 0.44 | 0.75 |
|                   | Cox3      | 77- 88           | 8,14                | 7,77   | -0,37 | 8,11  | 5,25                   | 0,05 | 15,57 | 0    | 0,1  | 3,2  | 18,7 | 1.69 | 2.90 |
|                   | Ар        | 0 - 13           | 5,76                | 5,04   | -0,72 | 6,46  | 0                      | 0,09 | 1,36  | 0,22 | 0,1  | 4,5  | 3,89 | 1.02 | 1.75 |
| Quebrada El Salto | Cox1      | 13 - 25          | 5,54                | 4,88   | -0,66 | 5,74  | 0                      | 0,07 | 1     | 0,18 | 0,1  | 5,7  | 3    | 0.28 | 0.48 |
| da El             | Cox2      | 25 - 38          | 5,72                | 5,11   | -0,61 | 5,88  | 0                      | 0,09 | 1,46  | 0,22 | 0,1  | 4,6  | 3,94 | 1.37 | 2.36 |
| ıebra             | Cox3      | 38 - 65          | 6,1                 | 5,52   | -0,58 | 6,15  | 0                      | 0,07 | 0,82  | 0,15 | 0,07 | 9,1  | 8,73 | 0.66 | 1.13 |
| ŏ                 | Cox4      | 65 - 84          | 6,18                | 5,67   | -0,51 | 6,19  | 0                      | 0,05 | 0,9   | 0,21 | 0,1  | 18,1 | 1,71 | 1.46 | 2.51 |
|                   | А         | 0 - 14           | 7,18                | 6,74   | -0,44 | 7,41  | 0                      | 0,05 | 3,69  | 0,49 | 0,26 | 7,2  | 7,84 | 1.61 | 2.77 |
| na 1              | Bw1       | 14 - 47          | 6,15                | 4,84   | -1,31 | 6,62  | 0                      | 0,07 | 1,96  | 0,48 | 0,2  | 8,4  | 7,53 | 0.26 | 0.44 |
| Guama 1           | Cox1      | 47 - 67          | 5,45                | 4,41   | -1,04 | 5,68  | 0                      | 0,16 | 1,96  | 0,37 | 0,16 | 9,4  | 27,4 | 1.25 | 2.15 |
|                   | Cox2      | 67 - 100         | 5,56                | 4,55   | -1,01 | 5,87  | 0                      | 0,09 | 13,07 | 0,24 | 0,3  | 7,4  | 26,3 | 0.45 | 0.77 |
|                   | Ap1       | 0 - 12           | 7,83                | 7,73   | -0,1  | 8,02  | 2,75                   | 0,05 | 11,93 | 0,16 | 0,23 | 3,6  | 18,5 | 1.57 | 2.70 |
|                   | Ap2       | 12 - 36          | 7,57                | 7,25   | -0,32 | 7,78  | 2,58                   | 0,09 | 6,67  | 0,16 | 0,2  | 8,9  | 9,16 | 0.78 | 1.34 |
| dero              | Bt1       | 36 - 55          | 7,46                | 6,76   | -0,7  | 7,57  | 0                      | 0,01 | 4,11  | 0,14 | 0,23 | 9,6  | 6,74 | 0.99 | 1.70 |
| Paradero          | Bt2       | 55 - 82          | 7,33                | 6,59   | -0,74 | 7,49  | 0                      | 0,14 | 3,83  | 0,22 | 0,3  | 22,9 | 5,5  | 1.57 | 2.70 |
|                   | Bt3       | 82 -120          | 7,3                 | 6,53   | -0,77 | 7,4   | 0                      | 0,07 | 2,69  | 0,15 | 0,23 | 9,1  | 2,93 | 0.34 | 0.58 |
|                   | Bt4       | 120 133          | 7,07                | 6,47   | -0,6  | 7,24  | 0                      | 0,07 | 2,06  | 0,16 | 0,17 | 6,6  | 4,86 | 1.11 | 1.91 |
|                   | А         | 0 -20            | 6,79                | 5,69   | -1,1  | 7,11  | 0                      | nd   | nd    | nd   | nd   | nd   | nd   | 0.72 | 1.24 |
| na 2              | Cox1      | 20 - 42          | 5,73                | 4,51   | -1,22 | 6,22  | 0                      | nd   | nd    | nd   | nd   | nd   | nd   | 1.44 | 2.48 |
| Guama 2           | Cox2      | 42 - 75          | 5,79                | 4,36   | -1,43 | 6,03  | 0                      | nd   | nd    | nd   | nd   | nd   | nd   | 0.28 | 0.48 |
|                   | Cox3      | 75 -115          | 6,37                | 4,68   | -1,69 | 6,44  | 0                      | nd   | nd    | nd   | nd   | nd   | nd   | 1.53 | 2.63 |
| nd no det         | terminado | •                |                     |        |       |       |                        |      |       |      |      |      |      |      |      |

no determinado

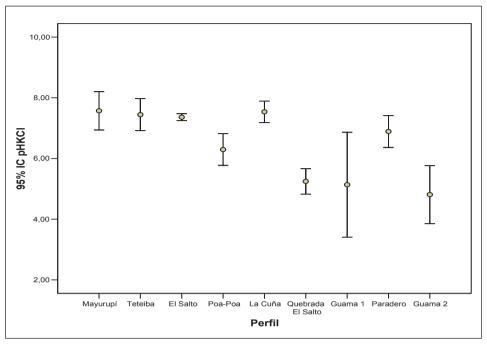



Figura 3. Distribución de promedios y dispersión de pH KCI por perfiles

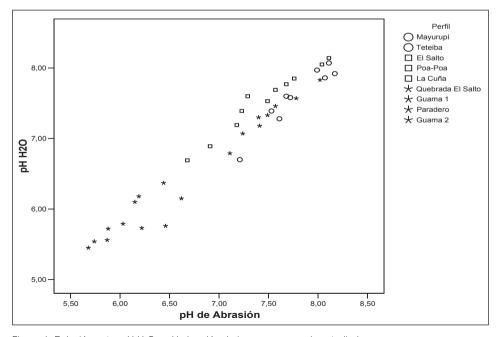



Figura 4. Relación entre pH  $\rm H_2O$  y pH abrasión de la cronosecuencia estudiada

Al observar el cuadro 6 podrá notarse como en todas las propiedades químicas analizadas hasta el momento (pH) se encuentran diferencias significativas (p < 0.05) entre los suelos. El análisis a posteriori de los promedios permite establecer grupos según su comportamiento estadístico e indica que la edad relativa de los suelos influye en estas propiedades químicas.

Los resultados del porcentaje de carbonato de calcio (Cuadro 5), muestran valores mínimos que van desde el 0% asociado a los perfiles más antiguos (quebrada El Salto, Guama 1 y Guama 2), hasta el máximo de 5,33% en el perfil Teteiba (Holoceno). Resultados similares han sido reportados en depósitos cuaternarios de otras altitudes, pero parecidos a los de esta investigación (Roquero *et al.*, 1997; Bellinfante *et al.*, 1998; VandenBygaart y Protz, 1994; Ortiz *et al.*, 2002; Srivastava *et al.*, 2002 y Alonso *et al.*, 2004).

La presencia o no de carbonato de calcio en los suelos investigados está íntimamente relacionado con el área fuente o material de origen de estos suelos como son los esquistos calcáreos y mármoles de la Formación Nirgua y los esquistos y gneises de Las Brisas. De tal manera, que los depósitos cuaternarios originados entre las regiones de Yaritagua y Campo Elías así como los suelos asociados han heredado del material parental el carbonato de calcio, producto de la alteración del mineral calcita que, de acuerdo a Bellizzia y Rodríguez (1976), es muy abundante en las rocas esquistosas y mármoles que presentan la misma composición.

La literatura señala que el carbonato de calcio que precipita en el suelo es de origen secundario y comienza su proceso de acumulación desde que se inicia la depositación del material parental (Machete, 1985; McFadden y Tinsley, 1985; Harden *et al.*, 1985); no obstante, la presencia de estos carbonatos varía en función de la edad relativa de los depósitos: los carbonatos se comportan de una forma heterogénea (S=1,59) en compara-

Cuadro 6. Análisis de varianza de un factor para comparar medias de propiedades químicas entre suelos (pH)

| Propiedad Química | Comparación  | Suma de cuadrados | gl | Media cuadrática | F      | Significancia |
|-------------------|--------------|-------------------|----|------------------|--------|---------------|
|                   | Inter-grupos | 21,696            | 8  | 2,712            |        |               |
| pH H20            | Intra-grupos | 5,064             | 30 | ,169             | 16,067 | ,000          |
|                   | Total        | 26,760            | 38 |                  |        |               |
|                   | Inter-grupos | 43,337            | 8  | 5,417            |        |               |
| pH KCI            | Intra-grupos | 7,982             | 30 | ,266             | 20,360 | ,000          |
|                   | Total        | 51,320            | 38 |                  |        |               |
|                   | Inter-grupos | 17,050            | 8  | 2,131            |        |               |
| pH de Abrasión    | Intra-grupos | 4,676             | 30 | ,156             | 13,673 | ,000          |
|                   | Total        | 21,725            | 38 |                  |        |               |

ción con su promedio (1,17); el análisis de varianza indica que existen diferencias significativas al 5% entre los perfiles (p= 0,008), así relativamente en promedio, los mayores porcentajes de carbonato de calcio lo poseen los suelos poco evolucionados y los menores porcentajes, los suelos más evolucionados, y que son más homogéneos en sus valores los perfiles más antiguos que los perfiles menos evolucionados (Cuadro 7). Se mantiene el caso del perfil Paradero, que por sus valores en todos los índices analizados, se diferencia del resto de los perfiles antiguos, aunque en este caso su comportamiento es más parecido a lo esperado; sólo se observa la presencia de carbonatos en los horizontes A de este perfil, lo cual posiblemente se relacione con procesos de recarbonatación ocurridos posteriormente, como ha sido reportado por otros investigadores (Roquero et al., 1997).

Con relación a los cationes de cambio la secuencia observada en estos suelos es la siguiente: Ca>K>Mg>Na. Probablemente esto se relaciona con el material parental de los suelos, cuyas rocas poseen dentro de su composición mineralógica a la calcita, albita, moscovita, clorita v microclima que, al meteorizarse, aportan estos elementos químicos al suelo. El análisis estadístico de Ca mostró que sus valores no sobrepasan en sus horizontes el 17% y que los valores promedio por perfiles disminuyen en la medida que el suelo es más evolucionado (González, 2006). Al comparar los promedios entre perfiles se encontraron diferencias significativas para un  $\alpha = 0.05$  (p = 0.01), siendo el perfil La Cuña con el cual se presentaron las mayores diferencias entre perfiles. Vidic et al. (1991) y Bain et al. (1993) reportaron un comportamiento similar en las cronosecuencias estudiadas por ellos. Igualmente, sólo hubo diferencias significativas entre los suelos para el potasio y el magnesio (p = 0.018 y 0,003, respectivamente).

La mayoría de los perfiles no muestran un patrón definido de la CIC y el %

Cuadro 7. Medidas descriptivas del % de carbonato de calcio por perfiles

| Perfiles          | n  | Media  | Desviación típica | Mínimo | Máximo |
|-------------------|----|--------|-------------------|--------|--------|
| Mayurupí          | 4  | 1,8925 | 1,14086           | 1,08   | 3,50   |
| Teteiba           | 5  | 1,9820 | 2,72689           | 0,00   | 5,33   |
| El Salto          | 3  | 1,0533 | 0,09238           | 1,00   | 1,16   |
| Poa-Poa           | 4  | 1,5175 | 0,40722           | 0,91   | 1,75   |
| La Cuña           | 4  | 3,4275 | 1,56706           | 1,80   | 5,25   |
| Quebrada El Salto | 5  | 0,0000 | 0,00000           | 0,00   | 0,00   |
| Guama 1           | 4  | 0,0000 | 0,00000           | 0,00   | 0,00   |
| Paradero          | 6  | 0,8883 | 1,37725           | 0,00   | 2,75   |
| Guama 2           | 4  | 0,0000 | 0,00000           | 0,00   | 0,00   |
| Total             | 39 | 1,1731 | 1,58595           | 0,00   | 5,33   |

SB a aumentar o disminuir con la profundidad o la edad relativa del perfil, tal como ha ocurrido para otras cronosecuencias (Alexander v Holowaychuk, 1983; Howard et al., 1993; Bain et al., 1993). El CO y la MO tampoco presentan una tendencia definida de acuerdo a su edad relativa. No hay diferencias significativas entre los perfiles para ambas propiedades, al 5%. Los valores bajos tanto de CO como de MO han sido interpretados por otros investigadores, como el resultado de la intensa actividad agrícola a la cual han sido sometidos los suelos durante largo tiempo (Roquero et al., 1997; Bellinfante et al., 1998).

El análisis de componentes principales (ACP), se utilizó para todas las variables químicas y para el tamaño de la partícula. Esta técnica permitió establecer que los componentes 1 y 2 absorben el 52% de la varianza explicada acumulada.

El componente 1 está definido por el pH en agua, KCl, abrasión; por el CaCO, y el Ca. Un comportamiento similar para el caso de los pH y CO ha sido reportado en algunos estudios previos (Rondón, et al., 1997; Gutiérrez, et al., 1998 v Ochoa, et al., 2000). Mientras que el componente 2, está definido por el % de arena total, limo y arcilla, el % de SB, calcio y % de CaCO<sub>2</sub> (Figura 5). En esta figura se puede observar que los pH están íntimamente relacionados entre sí y se correlacionan con el grado de desarrollo pedogenético del perfil; lo mismo se observa para el Ca y el CaCO<sub>3</sub>. El factor 1 está asociado con la reacción del suelo, el Ca y CaCO, El factor 2 está asociado con el tamaño de distribución de partículas, recuérdese que sólo la arcilla mostraba una cierta tendencia a variar en la cronosecuencia.

Esta distribución de ACP, evidencia la conformación de dos sectores: el sec-

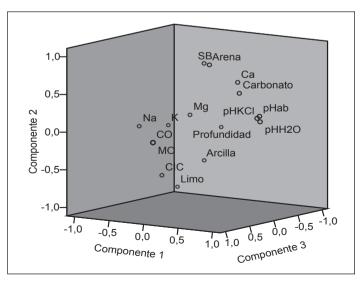



Figura 5. Componentes principales en espacio rotado de variables estudiadas

tor 1 que se relaciona con los parámetros químicos antes comentados incluyendo la profundidad del perfil y el Mg, y el sector 2, donde se ubican el Na, K, CO, MO y CIC. En el primer sector, las propiedades analizadas parecen cambiar unidireccionalmente con la edad del suelo; mientras que las propiedades del sector 2 aparentemente no muestran ese mismo comportamiento. Estos resultados sugieren, que probablemente el factor que está influyendo en la variación de estas propiedades con el tiempo es el material parental, como se señaló previamente.

### 5. Conclusiones

Con relación a la cronosecuencia estudiada se llegó a las siguientes conclusiones:

- Las propiedades físicas cualitativas de los suelos estudiados, con excepción de la dureza, evidenciaron una relación estadística significativa al 5% entre la edad relativa de los suelos y la estructura, friabilidad, adhesividad, plasticidad y compacidad.
- 2) El color de los suelos más recientes (Holoceno) varió entre el marrón grisáceo (10YR 5/2) y marrón oliva claro a marrón claro gris (2,5Y 5/3 a 10YR 6/2) y el mismo, probablemente, es heredado del material parental. Los suelos medianamente evolucionados (Pleistoceno Tardío-Holoceno) se caracterizan por la presencia de colores marrones (10YR 53) y marrón amarillento (10YR 54), mientras que los suelos más antiguos (Pleistoce-

- no Temprano a Medio) presentan colores marrón fuerte (7,5YR 4/6) a marrón amarillento y amarillo rojizo (10YR 5/4 y 7,5YR 6/8) en algunos de los horizontes. Esta relación entre el color de los suelos y su edad relativa es estadísticamente significativa.
- 3) El tamaño de la partícula en estos suelos es dominada por la fracción arenosa, por lo que la clase textural de los mismos es la franco-arenosa, tanto para los suelos jóvenes como para los medianamente evolucionados y antiguos. El predominio de las texturas arenosas en estos suelos, posiblemente se relaciona con la presencia en el material parental de minerales resistentes a la meteorización (cuarzo principalmente y mica muscovita). Con relación al limo, los valores más bajos se presentaron en los suelos holocénicos, mientras que en los suelos medianamente evolucionados y antiguos se observaron los mayores valores de limo. Sin embargo, el análisis estadístico no reveló diferencias significativas entre los grupos de suelos con base a sus valores promedio. En el caso de la fracción arcillosa, se observó una clara tendencia a aumentar su porcentaje en la medida en que los suelos están más meteorizados; no obstante, ésta no permite establecer una diferenciación clara entre los grupos de suelos según su edad relativa.
- 4) La reacción del suelo o pH en agua fluctúa entre 5,45 y 8,14 lo que indica que el pH de los suelos varía de relativamente ácido a básico. Esta variación del pH parece estar íntimamente

relacionada con la presencia de carbonatos en estos suelos, sobre todo en aquellos que se formaron a partir de las rocas de la Formación Nirgua. Los valores promedio del pH indican una tendencia casi constante a ir disminuyendo con la edad del perfil. Por su parte, los valores promedio del pH en KCl muestran una tendencia más clara a disminuir con la edad del suelo que el pH en agua. El pH de abrasión también indicó la presencia de subgrupos de edad relativa, donde se observa que a menor valor de pH de abrasión mayor vejez del suelo. Igualmente, se observó una relación lineal directa entre el pH en agua y el de abrasión tomando en cuenta la edad relativa del perfil: suelos más meteorizados presentan menor pH de abrasión y menor pH en agua y los menos meteorizados se acompañan de los valores más altos de pH abrasión y pH H<sub>0</sub>O.

- 5) Los valores de carbonato reportados para estos suelos varían significativamente entre o y 5,33% (suelos más antiguos a los más jóvenes). De acuerdo a lo anteriormente señalado, el porcentaje de carbonatos varía en función de la edad relativa de los depósitos. En promedio, los mayores porcentajes de carbonato de calcio lo poseen los suelos poco evolucionados y los menores porcentajes los suelos más evolucionados.
- 6) Con respecto a los cationes de cambio se encontró una relación en donde el Ca>K>Mg>Na. De acuerdo a esta relación el Ca es el catión dominante y

- el más abundante y esto está asociado con la presencia del mineral calcita en los esquistos, filitas y calizas metamorfizadas de la Formación Nirgua, el cual también es relativamente abundante en esta litología. El análisis estadístico de este elemento químico, reveló que este catión disminuye en la medida que el suelo es más evolucionado. Con relación al K, Mg y Na sólo se encontraron diferencias significativas al 5% para el K y el Mg.
- 7) La CIC es baja para los suelos estudiados, presentándose los máximos valores en los horizontes Ap, Bw y Bt. Esto probablemente se relaciona con el mayor contenido de MO y arcilla que incrementan relativamente la CIC en esos horizontes. Por otro lado, esta propiedad química no muestra un patrón definido a aumentar o disminuir con la edad de la cronosecuencia estudiada. Los valores de % SB también son bajos con relación a la edad de los suelos, mostrando un comportamiento similar a la CIC.
- 8) Los valores de CO y MO son bajos y los mismos no muestran una tendencia a disminuir o aumentar con la profundidad del perfil. El análisis estadístico no mostró diferencias significativas al 5%, con relación a estas propiedades y la edad de la cronosecuencia.
- 9) No todas las propiedades físicas y químicas de los suelos analizados en este estudio se comportan de una manera unidireccional con relación a la edad relativa de la cronosecuencia. Las propiedades físicas cualitativas que más se acercan a este comportamien-

to son la estructura, adhesividad, friabilidad, compacidad y el color. Mientras que desde el punto de vista cuantitativo la propiedad física que más se corresponde con la edad relativa de la cronosecuencia es el contenido de arcilla, el cual se incrementa con la edad del perfil, pero depende también del material parental que le da origen al suelo. En cuanto a las propiedades químicas, el pH en KCl, el porcentaje de carbonatos y el contenido de Ca intercambiable (factor 1), así como la textura y el % de saturación con bases (factor 2), de acuerdo a los análisis estadísticos realizados, son las que muestran una tendencia más clara a disminuir con el tiempo.

10) Finalmente, los parámetros pedológicos discutidos anteriormente sólo reflejan algunas diferencias estadísticamente significativas en cuanto al grado de evolución de los suelos analizados en esta cronosecuencia. En este tipo de investigación, como lo señalan Bezada v Schubert (1987) es necesario evaluar muy bien las diferencias del material parental y acompañar estos análisis con métodos de datación absoluta que permitan determinar con mayor precisión a que época del período Cuaternario pertenecen estos depósitos, ya que cuando se trata de estimar la edad de una superficie geomorfológica, solamente con base a datos derivados de los análisis pedológicos, éstos pueden introducir un error que varía con relación a la edad entre el 30% y 50% (Harden et al., 1985; Harrison et al.,1990; Birkeland, 1990).

### 6. Referencias citadas

- ALEXANDER, E. B. and N. HOLOWAYCHUK. 1983. Soils on terraces along the Cauca river, Colombia: I. chronosequence characteristics. Soil Science Society American Journal. (47): 715-721.
- ALONSO, P.; SIERRA, C.; ORTEGA, E. and C. DORRONSORO. 1994. Soil development indices of soils developed on fluvial terraces (Peñaranda de Bracamonte, Salamanca, Spain). Catena. (23): 295-308.
- ALONSO, P.; DORRONSORO, C. and J. A. EGI-DO. 2004. Carbonatation in paleosols formed on terraces of the Tormes River basin (Salamanca, Spain). **Geoderma**. 118: 261-276.
- BAIN, D. C.; MELLOR, A.; ROBERTSON-RIN-TOUL, M. S. E. and S. T. BUCKLAN. 1993.
- Variations in weathering processes and rates with time in a chronosequece of soils from Glen Fefshie Scotland. **Geoderma**. (57): 275-293.
- BELLIZZIA, A. y D. RODRÍGUEZ. 1968. Consideraciones sobre la estratigrafía de los estados Lara, Yaracuy, Cojedes y Carabobo.
  Boletín Geológico. 9(18): 515-563.
- BELLIZZIA, A. y D. RODRÍGUEZ. 1976. *Geología del estado Yaracuy*. **Boletín Geológico**. Publicación Especial, 5-6: 3317-3417.
- BELLIZZIA, A.; RODRÍGUEZ, D. y E. ZAM-BRANO. 1969. Mapa geológico del estado Yaracuy. *IV Congreso Geológico Venezola-no*. Ministerio de Minas e Hidrocarburos, Dirección de Geología.
- BELLINFANTE, C. N.; RUIZ, C. M. A.; LÓPEZ, J. A.; LIMÓN, S. F. y G. G. PANEQUE. 1998. Suelos de las terrazas cuaternarias del curso medio del río Guadalupe (Arcos de la frontera, Cádiz). Cuaternario y Geomorfología. 12(3-4): 87-98.

- BEZADA, M. 1990. Glacial del cuaternario de la región de Santo Domingo –Pueblo Llano–Las Mesitas (Estados Mérida y Trujillo). Instituto Venezolano de Investigaciones Científicas. Tesis Doctoral, 245 p. (Inédita).
- BEZADA, M. y C. SCHUBERT. 1987. Cronología Cuaternaria en Venezuela: Algunos problemas metodológicos y pedológicos.

  Acta Científica Venezolana. (38): 1-12.
- BIRKELAND, P. W. 1990. Soil-geomorphic research- a selective overview. **Geomorphology**. (3): 207-224.
- BIRKELAND, P. W.; MACHETTE, M. N. and K. M. HALER. 1991. Soils as a tool for applied Quaternary geology, Utah Geological and mineral survey. A Division of Utah Department of Natural Resources, Miscellaneous Publication. (91-3).
- BIRKELAND, P. W. 1999. **Soil and Geomorphology**. Oxford University Press. 430 p.
- BOCKHEIM, J. G. 1980. Solution and use chronofunctions in studying soil development. Geoderma. (24): 71-85.
- BOUYOUCOS, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. **Journal Agronomy**. (54): 464-465.
- BUSACCA, A. J. 1987. Pedogenesis of a climosequence in the Sacramento valley, California, USA, I. application of a soil development index. Geoderma. (41): 123-148.
- CASAS-SAINZ, A. M. 1995. Geomorphological and sedimentary features along an active right-lateral reverse fault (Yaracuy basin, Venezuela). Z. Geomorph N. F. 39 (3):363-380.
- COLMENARES, B. M. 2002. Caracterización pedogeomorfológica de una toposecuencia de suelos en la cuenca alta del río Guárico. Instituto Pedagógico de Caracas. Universi-

- dad Pedagógica Experimental Libertador. Caracas-Venezuela. Trabajo de grado de Maestría, 88p. (Inédito).
- COPLANARH. 1975. Estudio geomorfológico de las regiones costa noroccidental, centro occidental y central (Sistema montañoso noroccidental. Nº 44; pp. 24-133.
- DAWSON, B. S. W.; FERGUSSON, J. E.; CAM-BELL, A. S. and E. J. B. CUTLER. 1991. Depletion of first-row transition metals in a chronosequence of soils in the reefton area of New Zealand. **Geoderma**. (48): 271-
- FERRARI, G. A. and D. MAGALDI. 1983. Degree of soil weathering as determined by abrasion pH applications in soils study and in paleopedology. **Pedologie**. XXXIII: 93-101.
- GIL, H. y R. REINALDO. 1996. Geomorfología del tramo costero ubicado entre la bahía de La Esmeralda y Punta Mula, Estado Sucre. Instituto Pedagógico de Caracas. Universidad Pedagógica Experimental Libertador, Caracas. Tesis de Grado de Maestría, 127 p. (Inédito).
- GIRALDO, C. 1985. Neotectonique et sismotectonique de la región del Tocuyo-San Felipe (Venezuela centro occidental). Universite des Sciences et Techiniquies Du Languedoc. Tesis Doctoral, 130 p. (Inédita).
- GODOY, I. 2000. Estudio de la geología glacial del cuaternario en la cuenca de la Quebrada Las Tapias, Sierra Nevada de Santo Domingo Estado Mérida, Venezuela. Universidad Pedagógica Experimental Libertador. Instituto Pedagógico de Caracas. Tesis de Grado de Maestría, 119 p. (Inédito).
- GONZÁLEZ, O. 1995. Comparación de la geología glacial del cuaternario de las quebradas Mucuchache-Saisay-Muchuruao (Andes

- centrales venezolanos) Estado Mérida. Universidad Pedagógica Experimental Libertador. Instituto Pedagógico de Caracas. Tesis de Grado de Maestría, 239 p. (Inédita).
- GONZÁLEZ, O. 2006. Análisis de una cronosecuencia de suelos en la región de Yaritagua y Guama, estado Yaracuy. Universidad Pedagógica Experimental Libertador. Instituto Pedagógico de Caracas. Trabajo de Ascenso, 123 p. (Inédito).
- GONZÁLEZ, O. y M. BEZADA. 2001. Pedología y cronología relativa de los depósitos Cuaternarios en tres cuencas de los Andes Centrales de Venezolanos (Edo. Mérida). Acta Científica Venezolana. (52): 210-219.
- GRANT, W. H. 1969. Abrasion pH, an index of chemical weathering. Clays and Clay Minerals. Vol. 17: 151-155.
- GUTIÉRREZ, D.; OCHOA, G.; OBALLOS, J. y J. VELÁZQUEZ. 1998. Suelos de la cuenca del Santo Domingo. Sector Las Mesas. (Caracterización físico-química). Mérida-Venezuela. Revista Forestal de Venezuela. 42 (2): 141-147.
- HARDEN, D. R.; BIGGAR, N. E. and M. L. GUILLAN.1985. Deposits and soils in and around Spanish Valley, Utah. Geological Society of America, special paper. (203): 43-64.
- HARRISON, J. B. I.; McFADDEN, L. D. and R. J.WELDON. 1990. Spatial soil variability in the Cajon Pass chronosequence: Implications for the use of soils as a geochronological toll. **Geomorphology**. (3): 399-416.
- HOWARD, J. L.; AMOS, D. F. and W. LEE DA-NIELS. 1993. Alluvial soil chronosequence in the inner coastal plain, central Virginia. Quaternary Research. (39): 201-213.
- HUBER, O. y C. ALARCÓN. 1988. Mapa de vegetación de Venezuela. Ministerio del

- Ambiente y de los Recursos Naturales Renovables. Dirección de Suelos, Vegetación y Fauna, División de Vegetación.
- IGWE, C. A.; ZAREI, H. and K. STAHR. 2005. Mineral and elemental distribution in soils formed on the river Niger floodplain, eastern Nigeria. Australian Journal of Soil Research. 43: 147-158.
- JACKSON, M. 1964. Chemical composition of soil. In: F.E. Bear (ed.) Chemistry of the soil. 71-141. Reinhold. New York - USA.
- McFADDEN, L. D. and J. C. TINSLEY. 1985. Rate and depth of pedogenic-carbonate accumulation in soils: Formulation and testing of a compartment model. **Geological Society** of America, special paper. 203: 23-41.
- McFADDEN, L. D. and P.L.K. KNUEPFER. 1990. Soil geomorphology: the linkage of pedology and superficial processes. **Geomorphology**. 3: 197- 205.
- MACHETTE, M. N. 1985. Calcic soils of the southwestern United States. Geological Society of America, special paper. (2003): 1-21.
- MALAGÓN, D. 1979. Mineralogía, micromorfología y génesis de los principales suelos en la toposecuencia  $(T_{\scriptscriptstyle 1}-T_{\scriptscriptstyle 4})$ ; río Chama, San Juan de Lagunillas, Estado Mérida, Venezuela. CIDIAT. Serie Suelo y Clima. (25):173.
- MALAGÓN, D. 1982. Evolución de suelos en el Páramo Andino (NE del estado Mérida, Venezuela). CIDIAT, serie Suelo y Clima. 56:
- MOLNIA, B. and O. PILKEY. 1971. Origin and distribution of calcareous fines on the Carolina Continental Shelf. Sedimentology. 18: 293-310.
- OCHOA, G. y D. MALAGÓN. 1980. Génesis de algunos suelos en la cuenca media y alta del

- río Motatán, estados Mérida y Trujillo. CI-DIAT. Serie Suelos y Clima. (51-39): 89 p.
- OCHOA, G, OBALLOS, J., SÁNCHEZ, J., SOSA, J., MANRIQUE, J. y J. VELÁSQUEZ. 2000. Variación del Carbono Orgánico en función de la altitud. Cuenca del río Santo Domingo. Mérida- Barinas, Venezuela. Revista Geográfica Venezolana. 41 (1): 79-87.
- ORTIZ, I.; MARTÍN, F; DORRONSORO, C. y M. SIMÓN. 2000. *Análisis de una cronosecuencia de suelos. Edafología*. (7-3): 169-175.
- ORTIZ, I.; SIMÓN, M.; DORRONSORO, C.; MARTÍN, F. e I. GARCÍA. 2002. Soil evolution over the Quaternary period in a Mediterranean climate. (SE Spain). Catena. 48: 131-148.
- OSPINA, A. y J. VILORIA. 2000. Guía para la descripción y muestreo de suelo en campo. Facultad de Agronomía, Universidad Central de Venezuela, Maracay Venezuela. 95 p. (Inédito).
- PASTRÁN, S. R. A. 2005. Estudio de la geología glacial cuaternaria en la quebrada El Royal, páramo de Mucuchíes Sierra de Santo Domingo, estado Mérida. Universidad Pedagógica Experimental Libertador. Instituto Pedagógico de Caracas. Trabajo de Grado de Maestría, 323 p. (Inédito).
- RONDÓN, M.; SALAS, D.; OCHOA, G. y J. OBA-LLOS. 1997. Suelos de la cuenca del Santo Domingo, sector Las Piedras. (Caracterización físico-química). Mérida-Venezuela. Revista Forestal de Venezuela. 41 (2): 161-167.
- ROQUERO, E.; GOY, J. L. y C. ZAZO. 1997.
  Nuevos índices cronológicos de evolución de los suelos en terrazas fluviales. Estudios Geológicos. 53: 3-15.
- RUHE, R. V. 1956. *Geomorphic surfaces and the nature of soils*. Soil Science. 82 (6): 441-445.

- RUHE, R. V. and W. H. SCHOLTES. 1956. Ages and development of soil landscapes in relation to climate and vegetational changes Iowa. Soil Science Society Proceedings, 20: 264-273.
- SCHUBERT, C. 1982. Neotectonics of Boconó fault, western Venezuela. **Tectonophysisc**. 85: 205-220.
- SCHWERTMANN, V. and R. M. TAYLOR. 1989. Iron oxides. In: **Soil Science Society of America (Minerals in soil environments)**. 379-425. (2° ed.) SSSA Books series, N° 1.
- STEVENS, P. R. and J. W. Walker. 1970. Chronosecuence concept and soil formation.

  The Quarterly Review of Biology. 45: 333-350.
- SRIVASTANA, P.; BHATTACHAYYA, T. and D. K. PAL. 2002. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (vertisols) of India. Clays and Clay Minerals. 50 (1): 111-126.
- TORRENT, J.; SCHWERTMANN, U.; FE-CHTER, H. and F. ALFEREZ. 1983. Cuantitative relationships between soil color and hematite content. Soil Science. 136 (6): 354-358.
- TORRES, M. 2000. Estudio de la geología glacial del cuaternario de la Quebrada el Venado en la Sierra de Santo Domingo, estado Mérida, Venezuela. Universidad Pedagógica Experimental Libertador. Instituto Pedagógico de Caracas. Trabajo de Grado de Maestría, 165 p. (Inédito).
- VANDENBYGAART, A. J. and R. PROTZ. 1994. Soil genesis on a chronosequence, Pinery provincial park, Ontario. Canadian Journal of Soil Science. 75: 63-72.
- VELÁSQUEZ, J. C.; OCHOA, G. y J. OBALLOS.

- 1997. Suelos de la Cuenca de Santo Domingo, sector La Soledad. (Caracterización físico-química). Barinas-Venezuela. **Revista Forestal Venezolana**. 41 (1): 69-75.
- VIDIC, N.; PAVICH, M. and F. LOBNIK. 1991.

  Statistical analyses of soil properties on
  a quaternary terrace of sequence in the
  upper Sava river valley, Slovenia, Yugoslavia. Geoderma. 51: 189-212.
- VIDIC, N. J. and F. LOBNIK. 1997. Rates of soil development of the chronosequence in the Ljubljana, basin Slovenia. **Geoderma**. 76: 35-64.
- VIVAS, L. 1970. Estudio geomorfológico de la cuenca superior de la quebrada Tuñame, estado Trujillo. Revista GeográficaVenezolana. (24-25): 69-112.
- VREEKEN, W. J. 1975. Principal kinds of chronosequences and their significance in soil history. **Soil Science**, 26(4): 379-394.
- WALKLEY, A. and I. A. BLACK. 1974. A critical examination of rapid method for determining organic carbon in soils. Soil Science, 63, 251-254.
- ZINCK, A. y P. URRIOLA. 1970. Origen y evolución de la Formación Mesa; un enfoque edafológico. Ministerio de Obras Públicas. División de Edafología. Barcelona-Venezuela.