La electroquímica en la evaluación de la corrosión en estructuras de concreto reforzado
Resumen
Las armaduras originalmente se encuentran pasivadas dentro del concreto hasta que se inicia el proceso de corrosión. La acción degradante de los agentes agresivos comienza en la superficie del concreto penetrando progresivamente hacia el interior a medida que incrementa la porosidad, permeabilidad y tensiones internas. A medida que avanza el grado de deterioro produce pérdida de masa y capacidad resistente. Durante el proceso de corrosión en estructuras de concreto reforzado, la zona anódica y la catódica están localizadas en la superficie del acero de refuerzo, mientras que el concreto actúa de electrolito, estableciendo una celda electroquímica. En la evaluación de la velocidad de corrosión se utilizan ensayos naturales, simulados y acelerados. Sin embargo, se prefiere utilizar técnicas electroquímicas de ensayos de corrosión acelerada que permite simular una velocidad de corrosión en breves periodos de tiempo. La medida del potencial eléctrico, ruido electroquímico y tomografía electroquímica se pueden medir espontáneamente. Mientras que resistencia a la polarización lineal, polarización cíclica, voltametría cíclica, Impedancia electroquímica, pulso galvanostatico, y otras, requieren aplicar una perturbación eléctrica para conseguir una cantidad de corrosión significativa mediante la formación de iones Fe++, en un tiempo relativamente corto, y así determinar la consecuencia de la corrosión en la armadura.
Recibido: 11-01-2022 Aceptado: 15-02-2022Palabras clave
Texto completo:
PDFReferencias
- Van Damme H. 2018. Concrete material science: Past, present, and future innovations, Cem. Concr. 1414 Res. 112, 5–24. https://doi.org/10.1016/j.cemconres.2018.05.002.
- Mehta PK. 2001. Reducing the Environmental Impact of Concrete. Concrete International. 23(10):61-66.
- Malhotra VM, Carette GG. 1982. Silica fume: a pozzolan of new interest for use in some concretes. Concrete Construction. May:445-446.
- Kayali O, ZhuB. 2005. Corrosion performance of medium-strength and silica fume high strength reinforced concrete in a chloride solution. Cement and Concrete Composites. 27(1):117-124.
- Mackechnie JR, Alexander MG. 2001. Repair principles for corrosion-damaged reinforced concrete structures. Research Monograph 5 1–36.
- Angst UM. 2018. Challenges and opportunities in corrosion of steel in concrete Mater. Struct. 1–20.
- Broomfield JP. 1997.Corrosion of steel in concrete. St. Edmundbury Press Limited.
- Bhattacharjee B. 2012. Some issues related to service life of concrete structures. Indian Concr. J. 8623– 29.
- Michel A, Otieno M, Stang H, Geiker MR. 2016. Propagation of steel corrosion in concrete: Experimental and numerical investigations. Cem. Concr. Compos. 70.
- Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J. 2016. International Measures of Prevention, Application, and Economics of Corrosion Technologies. Study NACE International1–30.
- Yu B, Liu ZJ, Chen Z. 2017. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construct. Build. Mater. 138, 101–113. doi:10.1016/j.conbuildmat.2017.01.100.
- Song HW, Saraswathy V. 2007. Corrosion Monitoring of Reinforced Concrete Structures—A Review. International Journal of Electrochemical Science. 2, 1-28.
- Zacharopoulou A, Zacharopoulou E, Batis G. 2014. Protection Systems for Reinforced Concrete with Corrosion Inhibitors. Open Journal of Metal. 4, 86-92. https://doi.org/10.4236/ojmetal.2014.44010.
- O’Reilly M, Darwin D, Browning J, Xing L, Lock Jr CE, Virmani YP. 2013. Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance. ACI Materials Journal. 110, 577-586.
- Hanson CM, Poursaee A, Jaffer SJ. 2012. Corrosion of Reinforcing Bars in Concrete. The Masterbuilder, December 2012.
- Andrade C, Alonso C, Gulikers J, Polder R, Cigna R, Vennesland O, Salta M, Raharinaivo A. 2004. Elsener, Test methods for on-site corrosion rate measurement of steel reinforcement in 1716 concrete by means of the polarization resistance method, Mater. Struct. 37 (2004) 623–642. 1717 https://doi.org/10.1007/BF02483292. 1718.
- Tuutti, K. 1982. Corrosion of steel in concrete. Sweden: CBI, 468 p.
- Qing Li C. 2004. Reliability based service life prediction of corrosion affected concrete structures, J. 1719 Struct. Eng. 130 1570–1577. https://doi.org/10.1061/(ASCE)0733-1720 9445 (2004) 130:10(1570). 1721.
- Raupach M. 2006. Models for the propagation phase of reinforcement corrosion – anoverview, 1722 Mater. Corros. 57, 605–613. https://doi.org/10.1002/maco.200603991.1723.
- Otieno B, Beushausen HD, Alexander MG. 2011. Modelling corrosion propagation in 1724 reinforced concrete structures – A critical review, Cem. Concr. Compos. 33, 240–245. 1725 https://doi.org/10.1016/j.cemconcomp.2010.11.002. 1726.
- Chen D, Mahadevan S. 2008. Chloride-induced reinforcement corrosion and concrete cracking 1727 simulation, Cem. Concr. Compos. 30, 227–238. 1728 https://doi.org/10.1016/.cemconcomp.2006.10.007. 1729.
- Chen F, Baji H, Li CQ. 2018. A comparative study on factors affecting time to cover cracking as a 1730 service life indicator, Constr. Build. Mater. 163, 681–694. 1731 https://doi. org/10.1016/j.conbuildmat.2017.12.120. 1732.
- Alexander M, Beushausen H. 2019. Durability, service life prediction, and modelling for reinforced 1733 concrete structures – review and critique, Cem. Concr. Res. 122, 17–29. 1734 https://doi.org/10.1016/j.cemconres.2019.04.018.
- Otieno MB, Beushausen HD, Alexander MG. 2011. Modelling corrosion propagation in reinforced concrete structures - a critical review. Cement Concr.Compos. 33 (2), 240– 245. doi:10.1016/j.cemconcomp.2010.11.002.
- Isgor C OB, Razaqpur AG. 2006. Modelling steel corrosion in concrete structures. Mater. Struct. 39 (3), 291–302. doi:10.1007/s11527-005-9022-7.
- Kranc SC, Sagüés AA. 2001. Detailed modeling of corrosion macrocells on steel reinforcing in concrete. Corrosion Sci. 43 (7), 1355–1372. doi:10.1016/s0010-938x(00)00158-x.
- Kim C CY, Kim JK. 2008. Numerical analysis of localized steel corrosion in concrete. Construct. Build. Mater. 22 (6), 1129–1136. doi:10.1016/j. conbuildmat.2007.02.007.
-Bo YU, Zhan L, Liu J et al. 2016. Influences of temperature and humidity on control mode and rate of reinforcing steel corrosion. J. Build. Mater. 19 (05), 844–849. doi:1007- 9629(2016)05-0844-06.
- Arpit CG, Homayoon S, Eshmaiel G, Olubanwo AO, Khorami M. 2019. Predicting the corrosion rate of steel in cathodically protected concrete using potential shift. Construct. Build. Mater. 194, 344–349. doi:10.1016/j. conbuildmat.2018.10.153.
- Chi CG. 2009. Research on electrochemical corrosion behavior of 70/30Cu-Ni alloy in seawater. Nanjing, China: Nanjing University of Aeronautics and Astronautics.
- Angst UM, Geiker MR, Alonso MC, Polder R, Isgor OB, Elsener B et al. 2019. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete:a critical review by RILEM TC 262-SCI. Mater. Struct. Constr. 52 (4), 88. doi:10.1617/s11527-019-1387-0.
- Wu K, Shi H, Xu L, Ye G, De Schutter G. 2015. Microstructural characterization of ITZ inblended cement concretes and its relation to transport properties. Cement Concr. Res. 79, 243–256. doi:10.1016/j. cemconres.2015.09.018.
- Zhu Z, Chen H, Liu L, Li X. 2017. Multi-scale modelling for diffusivity based on practical estimation of interfacial properties in cementitious materials. Powder Technol. 307, 109–118. doi:10.1016/j. powtec.2016.11.036.
- Soylev TA, François R. 2003. Quality of steel-concrete interface and corrosion of reinforcing steel. Cement Concr. Res. 33 (9), 1407–1415. doi:10. 1016/s0008-8846(03)00087-5.
- American Society for Testing and Materials.1991. Standard Method for Half Cell Potential of Uncoated Reinforcing Steel in Concrete. ASTM C876. Annual Book of ASTM Standards. Philadelphia.
- Andrade C. 2018, “Diseño y evaluación de la vida útil a través de resistividad eléctrica concreta”, Revista ALCONPAT, 8 (3), pp. 264-279, DOI: http://dx.doi.org/10.21041/ra.v8i3.349.
- Andrade C. 2004. “Calculation of initiation and propagation periods of service-life of reinforcements by using the electrical resistivity”. International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur, 22-24, RILEM Publications SARL.
- Andrade C, Bolzoni F, Fullea J. 2011. Analysis of the relation between water and resistivity isotherms in concrete, Materials and Corrosion, 62, no.2 130-138, https:// doi.org/10.1002/maco.201005777.
- Andrade C, Castellote M, D’Andrea R. 2011. Measurement of ageing effect of chloride diffusion coefficients in cementitious matrices, Journal of Nuclear Materials, Volume 412, Issue 1, pp 209-216. https://doi.org/10.1016/j.jnucmat.2010.12.236.
- Andrade C, D`Andréa R. 2010. Revista ALCONPAT, 8 (3), 2018: 264 – 279 Diseño y evaluación de la vida útil a través de resistividad eléctrica concreta C. Andrade 278. Concrete mix design based on the electrical resistivity- 2nd International Conference on Sustainable Construction Materials and Technologies. Ancona- Italy June. Ed. Coventry
University UK.
- Andrade C, D’Andrea R, Rebolledo N. 2014. “Chloride ion penetration in concrete: The reaction factor in the electrical resistivity model”, Cement and Concrete Composites,
Volume 47, pp 41-46, https://doi.org/10.1016/j.cemconcomp.2013.09.022.
- Andrade C, Fullea J, Alonso C. 2000. The use of the graph corrosion rate-resistivity in the measurement of the corrosion current- Proceedings of the International Workshop on “Measurement and interpretation of the on-site corrosion rate. MESINA- RILEM Proc. No. 18. Ed. Andrade C, Alonso C, Fullea J, Polimon J, Rodriguez J. Rilem Publications
S.A.R.L. 157-166.
- Stern M, Geary AL. 1957. Electrochemical polarization. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104(1), pp. 56–63.
- Andrade C, Gonzalez JA. 1978. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkst. Korros., 29, p. 515.
- Feliú S, González JA, Feliú S Jr, Andrade C. 1990. Confinement of the electrical signal for in situ measurement of polarisation resistance in reinforced concrete. ACI Materials Journal, September–October, pp. 457–460.
- Alonso C, Castellote M, Andrade C. 2002. Chloride threshold dependence of pitting potential of reinforcements. Electroquimica Acta, 47, pp. 3469–3481.
- Rodrigues R, Gaboreau S, Gance J, Ignatiadis I, Betelu S. 2020. Re- inforced concrete structures: A review of corrosion mechanisms and advances in electrical meth- ods for corrosion monitoring. Construction and Building Materials, Elsevier, pp.121240. 10.1016/j.conbuildmat.2020.121240. hal-02979786.
- Chousidis N, Rakanta E, Ioannou I, Batis G. 2015. Anticorrosive Effect of Electrochemical Manganese Dioxide By-Products in Reinforced Concrete. Journal of Materials Science and Chemical Engineering, 3, 9-20.
- Page C. 1975. Mechanism of corrosion protection in reinforced concrete marine structures. Nature 258, 514–515.
Raupach M. 1996. Chloride-induced macrocell corrosion of steel in concrete—theoretical background and practical consequences. Constr. Build. Mater. 10, 329–338.
- Kranc S, Sagüés AA. 2001. Detailed modeling of corrosion macrocells on steel reinforcing in concrete. Corros. Sci. 43, 1355–1372.
- Elsener B. 2002. Macrocell corrosion of steel in concrete–implications for corrosion monitoring. Cem. Concr. Compos. 24, 65–72.
- Angustia UM. 2018. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 51, 1–20.
- Andrade C, González J. 1978. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater. Corros. 29, 515–519.
- Hansson CM. 1984. Comments on electrochemical measurements of the rate of corrosion of steel in concrete. Cem. Concr. Res. 14, 574–584.
- Rodriguez P, Ramirez E, Gonzalez J. 1994. Methods for studying corrosion in reinforced concrete. Mag. Concr. Res. 46, 81–90.
- Elsener B. 1995. Corrosion rate on reinforced concrete structures determined by electrochemical methods. Mater. Sci. Forum 192, 857–866.
- Videm K, Myrdal R. 1997. Electrochemical behavior of steel in concrete and evaluation of the corrosion rate. Corrosion 53, 734–742.
- Nygaard PV. 2009. Non-Destructive Electrochemical Monitoring of Reinforcement Corrosion. (Kgs. Lyngby, Denmark: Technical University of Denmark (DTU) (BYG-Rapport; No. R- 202.
- Escalante E, Ito S, Cohen M. 1980. Measuring the Corrosion Rate of Reinforcing Steelin Concrete. Technical Report (National Bureau of Standards).
- Gonzalez J, Molina A, Escudero M, Andrade C. 1985. Errors in the electrochemical evaluation of very small corrosion rates—i. Polarization resistance method applied to corrosion of steel in concrete. Corros. Sci. 25, 917–930.
- Feliu S, Gonzalez J, Andrade C, Feliu V. 1989. Polarization resistance measurements in large concrete specimens: mathematical solution for a unidirectional current distribution. Mater. Struct. 22, 199–205.
- Kranc SC, Sagües A. 1993. Polarization current distribution and electrochemical impedance response of reinforced concrete when using guard ring electrodes. Electrochim. Acta 38, 2055–2061.
- Elsener B. 2005. Corrosion rate of steel in concrete—measurements beyond the Tafel law. Corros. Sci. 47, 3019–3033.
- Feliu SF, González JA, Andrade MC. 1990. Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete. Mater. J. 87, 457–460.
- Poursaee A, Hansson C. 2008. Galvanostatic pulse technique with the current confinement guard ring: the laboratory and finite element analysis. Corros. Sci. 50, 2739–2746.
- Clément A, Laurens S, Arliguie G, Deby F. 2012. Numerical study of the linear polarisation resistance technique applied to reinforced concrete for corrosion assessment. Eur. J. Environ. Civ. 16, 491–504.
- Angst U, Büchler M. 2015. On the applicability of the Stern–Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion. Mater. Corros. 66, 1017–1028.
- Laurens S et al. 2016. Steady-state polarization response of chloride-induced macrocell corrosion systems in steel reinforced concrete—numerical and experimental investigations. Cem. Concr. Res. 79, 272–290.
- Angst U, Büchler MA. 2020. New perspective on measuring the corrosion rate of localized corrosion. Mater. Corros. 71, 808–823.
- Andrade C, Castelo V, Alonso C, González JA. 1986. “The Determination of the Corrosion Rate of Steel Embedded in concrete by the polarization resistance and AC Impedance Methods”. ASTM STP 906, V. Chaker, Ed., American Society for Testing and Materials,
Philadelphia, 43-63.
- Clayton CR, Olefjord I, Marcus P, Oudar J. 1995. Corrosion Mechanisms in Theory and Practice, Marcel Dekker, Inc, New York, 157.
- González Fernández JA. 1989. “Control de la Corrosión, Estudio y Medida por Técnicas Electroquímicas”. Centro Nacional de Investigaciones Metalúrgicas. Madrid. España.
- T de Rincón O, Andrade C, y Colaboradores. 1998. “Manual de Inspección, Evaluación y Diagnostico de Corrosión en Estructuras de Hormigón Armado”. CYTED. Segunda Edición.
Albani OA, Zerbino JO, Vilche JR, Arvia AJ. 1986. A comparative electrochemical and ellipsometric study of the iron electrodes in different alkaline electrolytes. Electrochim. Acta 31, 1403.
Pedeferri P, Bertolini L, Bolzoni F, Pastore T. 1997. Behavior of Stainless Steel in Concrete, WorkShop Maracaibo.
Linares D, Sánchez M. 2003. Construcción, operación y puesta en funcionamiento de una cámara de carbonatación acelerada. Rev. Téc. Ing. Univ. Zulia. 26(1), p.34-44.
Castro-Borges P, Veleva L, Balancán-Zapata M, Mendoza-Rangel JM, Juárez-Ruiz LA. 2013. “Effect of Environmental Changes on Chemical and Electrochemical Parameters in Reinforced Concrete. The Case of a Tropical Marine Atmosphere”, J. Electrochem. Sci., Vol.8, No.5, pp.6204-6211.
Feliú V, González JA, Andrade C, Feliu S. 1998. Equivalent Circuit for Modelling the Steel-Concrete Interface. I. Experimental Evidence and Theorical Predictions. Corrosion Science. 40, 975-993. http://hdl.handle.net/10261/226888
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
Se encuentra actualmente indizada en: | |||
![]() |