Nanopartículas con actividad antimicrobiana como alternativa a los antibióticos convencionales
Resumen
La resistencia bacteriana a los antibióticos ha alcanzado niveles críticos a nivel mundial, reduciendo la eficacia de los tratamientos tradicionales y elevando la morbimortalidad por infecciones resistentes. En este contexto, las nanopartículas (NPs) con actividad antimicrobiana emergen como una alternativa prometedora frente a los antibióticos convencionales. Nanomateriales como las nanopartículas de plata (AgNPs), óxido de zinc (ZnO) y óxido de cobre (CuO) han demostrado una alta eficacia contra bacterias, hongos, virus, e incluso frente a cepas multirresistentes. Este artículo presenta una revisión de los principales métodos de síntesis de nanopartículas antimicrobianas, agrupados en dos enfoques fundamentales: top-down y bottom-up. Se analizan diversas téc-nicas asociadas a cada enfoque, así como sus ventajas, limitaciones y aplicaciones. Además, se discute la síntesis verde como una alternativa sostenible dentro del enfoque bottom-up. También se abordan los principales mecanismos responsables de la actividad biocida de las NPs. Los avances recientes posicionan a las nanopartículas con actividad antimicrobiana como solucio-nes innovadoras y versátiles para enfrentar la amenaza creciente de la resistencia antibacteriana, aunque aún persisten desafíos relacionados con su producción segura, escalabilidad y aplicación en entornos clínicos y ambientales
Recibido: 07/04/2025
Aceptado: 28/04/2025
Palabras clave
Texto completo:
PDFReferencias
https://enbreve.mx/resistencia-bacteriana-una-amenaza-global-que-podria-causar-10-millones-de-muertes-en-2050/ Acceso: 29/04/2025
J O'Neill. Tackling drug-resistant infections globally: final report and recommendations. Wellcome Trust. Reino Unido (2016).
https://amr-review.org/sites/default/files/160518_Final%20pa-per_with%20cover.pdf
B Aslam, W Wang, MI Arshad, M Khurshid, S Muzammil, MH Rasool et al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 11, 1645–1658 (2018).
M Rai, A Yadav, A Gade. Silver nanoparticles as a new genera-tion of antimicrobials. Biotechnology Advances, 27, 76–83 (2009).
N Jones, B Ray, KT Ranjit, AC Manna. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microor-ganisms. FEMS Microbiology Letters, 279, 71–76 (2008).
A Azam, AS Ahmed, M Oves, MS Khan, SS Habib, A Memic. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Inter-national Journal of Nanomedicine, 7, 6003–6009 (2012).
RY Pelgrift, AJ Friedman. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Re-views, 65, 1803–1815 (2013).
AK. Mittal, Y Chisti, UC Banerjee. Synthesis of metallic nano-particles using plant extracts. Biotechnology Advances, 31, 346–356 (2013).
A Poaquiza, L Toapanta, GA Criollo, JÁ Velasco, VÁ Aguirre, C Caiza-Valencia et al. Síntesis verde y caracterización de nanopar-tículas de plata estabilizadas con un polímero biodegradable para aplicaciones agrícolas en el control sostenible de plagas y enfer-medades. Bionatura Journal, 8, article number N8-2024.01. 04.23 (2024).
KA Altammar. A review on nanoparticles: characteristics, synthe-sis, applications, and challenges. Frontiers in Microbiology, 14, article number 1155622 (2023).
AR. Vázquez-Olmos, AL Vega-Jiménez, B Paz-Díaz. Meca-nosíntesis y efecto antimicrobiano de óxidos metálicos nanos-tructurados. Mundo Nano, 11, 29-44 (2018).
R Pérez, M Fernández, C Potel, R Carballo, S Pérez, M Boutinguiza et al. Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multi-species biofilm formation. International Journal of Molecular Sciences, 23, article number 12027 (2022).
S Oopath, J Martins, A Kakarla, S Petrovski, I Kong, A Baji. An-tibacterial hierarchical surface fabricated using nanoimprint li-thography. Journal of Applied Polymer Science, 141, article number e55392 (2024).
C Quintero, N Acevedo, J Zapata, L Botero, J Quintero, D Zárate et al. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomaterials Research, 23, 23–27 (2019).
D Díaz. Síntesis verde de óxidos semiconductores y sus diversas aplicaciones. Tesis de Maestría, Universidad Veracruzana, Boca del Río, Veracruz (2025).
J Song, B Kim. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineer-ing, 32, 79–84 (2009).
S Chandran, M Chaudhary, R Pasricha, A Ahmad, M Sastry. Syn-thesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577–583 (2006).
J Xu, Y Huang, L Zhang, N Abbes, A Al-Dhahebi, M Johan. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. Journal of Engineered Fibers and Fabrics, 16, 1–14 (2021).
K Raghupathi, R Koodali, A Manna. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028 (2011).
T Dakal, A Kumar, R Majumdar, V Yadav. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Micro-biology, 7, article number 1831 (2016).
Y Xie, Y He, P Irwin, T Jin, X Shi. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campyl-obacter jejuni. Applied and Environmental Microbiology, 77, 2325–2331 (2011).
Y Slavin, J Asnis, U Häfeli, H Bach. Metal nanoparticles: under-standing the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15, article number 65 (2017).
B. Paz Díaz. Estudio de las propiedades bactericidas de nanopar-tículas de CuO, ZnO, CuFe2O4 y ZnFe2O4. Tesis doctoral, Univer-sidad Nacional Autónoma de México, Instituto de Ciencias Apli-cadas y Tecnología, Ciudad de México, (2022).
R Vázquez, A Huerta. Nanomateriales con actividad microbicida: una alternativa al uso de antibióticos. Mundo Nano, 7, 37–47 (2014).
JA Lemire, JJ Harrison, RJ Turner. Antimicrobial activity of met-als: mechanisms, molecular targets and applications. Nature Re-views Microbiology, 11, 371–384 (2013).
Q Feng, J Wu, G Chen, F Cui, T Kim, J Kim et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52, 662–668 (2000).
C Lok, C Ho, R Chen, Q He, W Yu, H Sun et al. Proteomic anal-ysis of the mode of antibacterial action of silver nanoparticles.
G Franci, A Falanga, S Galdiero, L Palomba, M Rai, G Morelli et al. Silver nanoparticles as potential antibacterial agents. Mole-cules, 20, 8856–8874 (2015).
A Huh, Y Kwon. Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145 (2011).
A Fayaz, K Balaji, M Girilal, R Yadav, P Kalaichelvan, R Ven-katesan et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 103–109 (2010).
S Naqvi, U Kiran, M Ali, A Jamal, A Hameed, S Ahmed et al. Combined efficacy of biologically synthesized silver nanoparti-cles and different antibiotics against multidrug-resistant bacteria. International Journal of Nanomedicine, 3187–3195 (2013).
G Grass, C Rensing, M Solioz. Metallic copper as an antimicro-bial surface. Applied and Environmental Microbiology, 77, 1541–1547 (2011).
H A Foster, IB Ditta, S Varghese, A Steele. Photocatalytic disin-fection using titanium dioxide: spectrum and mechanism of anti-microbial activity. Applied Microbiology and Biotechnology, 90, 1847–1868 (2011).
X Gu, Z Xu, L Gu, H Xu, F Han, B Chen, X Pan. Preparation and antibacterial properties of gold nanoparticles: a review. Environ-mental Chemistry Letters, 19, 167–187 (2021).
EA Kumah, RD Fopa, S Harati, P Boadu, FV Zohoori, T Pak. Human and environmental impacts of nanoparticles: a scoping re-view of the current literature. BMC Public Health, 23, article number 1059 (2023).
Z Ferdous, A Nemmar. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21, article number 2375 (2020).
M Reyes, BO Ortega, M Chan, C Granados, JC Camacho, JE Pe-reañez, C Gaylarde. Antimicrobial engineered nanoparticles in the built cultural heritage context and their ecotoxicological im-pact on animals and plants: a brief review. Heritage Science, 6, article number 52 (2018).
S Rao, X Gao, S Ghoshal. Characterization of the fate of primary and re-precipitated silver nanoparticles in lake water model sys-tems. Frontiers in Environmental Chemistry, 6, article number 1511440 (2025).
Depósito Legal: PPI200602ME2232
ISSN: 1856-5301
DOI: https://doi.org/10.53766/AVANQUIM
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.