Sistemas colinérgicos neuronales y no-neuronales en infecciones parasitarias. Revisión sistemática y metaanálisis
Resumen
Para destacar el papel de los sistemas colinérgicos neuronales y no neuronales en las infecciones por parásitos de interés humano y veterinario, se realizó una revisión sistemática y metaanálisis consistente con una búsqueda documental en las bases de datos PubMed, Google Scholar y Scielo, con combinaciones de palabras claves en inglés y español, sin restricciones de tiempo, en base a un esquema expositivo. Un total de 40.538 documentos fueron encontrados, y solo 67 fueron incluidos de acuerdo a los criterios de selección definidos. Para el metaanálisis seleccionamos 7 artículos originales a fin de evaluar la efectividad preliminar de las vacunas con el uso del paquete MAVIS. Desde los experimentos de Otto Loewi en 1921, nuestro conocimiento sobre los sistemas colinérgicos neuronales y no neuronales se ha incrementado considerablemente. En infecciones por protozoarios el efecto inmunomodulador de estos microorganismos afectan la liberación de acetilcolina y promueven el establecimiento de respuestas de células Th1 en infecciones por Trypanosoma cruzi. En T. equiperdum se ha podido establecer una “hipótesis del calcio” para los receptores nicotínicos colinérgicos. En Schistosoma haematobium, la existencia de componentes de un sistema colinérgico no neuronal, permite postular una hipótesis para la “ingesta de glucosa”. Al tener conocimientos detallados de los efectos sobre los sistemas colinérgicos neuronales y no neuronales del hospedador en protozoos y establecer el papel de los sistemas colinérgicos no neuronales en metazoarios, se pueden explotar como blancos potenciales para el desarrollo de nuevas drogas y para obtener candidatos para vacunas en las infecciones parasitarias.
Recibido: 08 de Mayo de 2022
Aceptado: 05 Julio de 2022
Publicado online: 27 de Julio de 2022
Palabras clave
Texto completo:
PDFReferencias
Nees F. The nicotinic cholinergic system function in the human brain. Neuropharmacology 2015; 96: 289-301. [PubMed] [Google Scholar]
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 2018; 16: 338-49. [PubMed] [Google Scholar]
Oda A, Tanaka H. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture. Neural Regen Res 2014; 9: 2128-31. [PubMed] [Google Scholar]
Kucera M, Hrabovská A. [Cholinergic system of the heart]. Ceska Slov Farm 2015; 64: 254-63. [PubMed]
Fujii, T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134: 1-21. [PubMed] [Google Scholar]
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8: 1085. [PubMed][Google Scholar]
Chacín-Bonilla L. Enfermedades parasitarias como un problema de salud pública. Invest Clin 2013; 54: 1-4. [Google Scholar]
Yé Y, Eisele TP, Eckert E, Korenromp E, Shah JA, Hershey CL, Ivanovich E, Newby H, Carvajal-Velez L, Lynch M, Komatsu R, Cibulskis RE, Moore Z, Bhattarai A. Framework for Evaluating the Health Impact of the Scale-Up of Malaria Control Interventions on All-Cause Child Mortality in Sub-Saharan Africa. Am J Trop Med Hyg 2017; 97: 9-19. [PubMed][Google Scholar]
Eckert E, Florey LS, Tongren JE, Salgado SR, Rukundo A, Habimana JP, Hakizimana E, Munguti K, Umulisa N, Mulindahabi M, Karema C.Impact Evaluation of Malaria Control Interventions on Morbidity and All-Cause Child Mortality in Rwanda, 2000-2010. Am J Trop Med Hyg 2017; 97: 99-110. [PubMed] [Google Scholar]
Stolk WA, Kulik MC, le Rutte EA, Jacobson J, Richardus JH, de Vlas SJ, Houweling TAJ. Between-Country Inequalities in the Neglected Tropical Disease Burden in 1990 and 2010, with Projections for 2020. PLoS Negl Trop Dis 2016; 10: e0004560. [PubMed] [Google Scholar]
Chacín-Bonilla L, Vielma JR. Ciclosporiasis: distribución, prevalencia y control. Investigación Clínica. 2018; 59: 67-93. [Google Scholar]
Vielma J, Pérez I, Villarreal J, Vegas M, Yunasaiki R, Belisario M, Prieto M, Uzcátegui D, Hernández H, Pineda C, González E,Gutiérrez L. Acta Bioclínica. 2017; 7: 80-99. [Google]
Vielma JR, Yelitza Delgado Y, Bravo YA, Gutiérrez Peña LV, Villarreal JC. Enteroparasites and thermotolerant coliforms in water and human feces of sectors Juan de Dios González and El Moralito, Colón Municipality, Zulia State. Acta Bioclínica. 2016; 6: 25-43. [Google Scholar]
McKay DM, Fairweather I. A role for the enteric nervous system in the response to helminth infections. Parasitol Today 1997; 13: 63-9. [PubMed] [Google Scholar]
You H, Liu C, Du X, McManus DP. Acetylcholinesterase and Nicotinic Acetylcholine Receptors in Schistosomes and Other Parasitic Helminths. Molecules 2017; 22: 1550. doi: 10.3390/molecules22091550.[PubMed] [Google Scholar]
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The nonneuronal cholinergic system: basic science, therapeutic implications and new perspectives. Life Sci 2012; 91: 969-72. [PubMed] [Google Scholar]17. Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the nonneuronal cholinergic system. Int Immunopharmacol 2015; 29: 1-7.[PubMed]
Pereira L, Kratsios P, Serrano-Saiz E, Sheftel H, Mayo AE, Hall DH, White JG , LeBoeuf B, Garcia LR , Alon U, Hobert O. A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife 2015; 4: e12432. [PubMed] [Google Scholar]
Portillo R, Bruges G, Delgado D, Betancourt M, Mijares A. Trypanosoma evansi: pharmacological evidence of a nicotinic acetylcholine receptor. Exp Parasitol 2010; 125: 100-5. [PubMed][Google Scholar]
Mijares A, Concepción JL, Vielma JR, Portillo R. Immune detection of acetylcholinesterase in subcellular compartments of Trypanosoma evansi. Parasitol Res 2011; 108: 1-5. [PubMed][Google Scholar]
Jones AK, Bentley GN, Oliveros Parra WG, Agnew A. Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma. FASEB J 2002; 16: 441-3. [PubMed] [Google Scholar]
Camacho M, Alsford S, Agnew A. Molecular forms of tegumental and muscle acetylcholinesterases of Schistosoma. Parasitology 1996; 112: 199-204. [PubMed] [Google Scholar] 23. Xu H, Shen Z, Xiao J, Yang Y, Huang W, Zhou Z, Shen J, Zhu Y, Liu XY, Chu L. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer 2014; 14: 668. [PubMed] [Google Scholar]
Ball G, Selkirk ME, Knox DP. The effect of vaccination with a recombinant Nippostrongylus brasiliensis acetylcholinesterase on infection outcome in the rat. Vaccine 2007; 25: 3365-72. [PubMed] [Google Scholar]
McCoy AN, Tan SY. Otto Loewi (1873-1961): Dreamer and Nobel laureate. Singapore Med J 2014; 55: 3-4. [PubMed][Google Scholar]
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999; 49: 921-37. [PubMed][Google Scholar]
Fereira-Valbuena H, Bonilla E, Andrade A, Fereira E. Actividades de la Colinaacetiltransferasa y Acetilcollnesterasa en el Adenoma folicular no captante. Invest Clin 1982; 23: 267-72. [Google]
Zhou Y, Wang S, Zhang Y. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations. J Phys Chem B 2010; 114: 8817-25. [PubMed][Google Scholar]
Castellanos-Castillo FA. Estudio de la inhibición de la acetilcolinesterasa y la relación estructura-actividad de terpenoides aislados de organismos marinos del caribe colombiano. [Trabajo Especial de Grado]. Departamento de Química, Facultad de Ciencias. Universidad Nacional de Colombia. 2014. 133 pp. [Google Scholar]
Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE. Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 2015; 36: 895-907. [PubMed] [Google Scholar]
Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldà A, Miralpeix M, Morcillo E, Cortijo J. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res 2016; 17: 145. [PubMed] [Google Scholar]
Wilson C, Lee MD, McCarron JG. Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 2016; 594: 7267-307. [PubMed][Google Scholar]
Spieker J, Ackermann A, Salfelder A, Vogel-Höpker A, Layer PG. Acetylcholinesterase Regulates Skeletal in Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms. PLoS One 2016; 11: e0161675. [PubMed] [Google Scholar]
Oikawa S, Kai Y, Tsuda M, Ohata H, Mano A, Mizoguchi N, Sugama S, Nemoto T, Suzuki K, Kurabayashi A, Muramoto K, Kaneda M, Kakinuma Y. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stressrefractory propensity. Clin Sci (Lond) 2016; 130:1913-28. [PubMed] [Google Scholar]
Gori S, Vermeulen M, Remes-Lenicov F, Jancic C, Scordo W, Ceballos A, Towstyka N, Bestach Y, Belli C, Sabbione F, Geffner J, Salamone G. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 2017; 72: 221-31.[PubMed] [Google Scholar]
Pickett MA, Dush MK, Nascone-Yoder NM. Acetylcholinesterase plays a nonneuronal, non-esterase role in organogenesis. Development 2017; 144: 2764-70. [PubMed] [Google Scholar]
Reichrath S, Reichrath J, Moussa AT, Meier C, Tschernig T. Targeting the non-neuronal cholinergic system in macrophages for the management of infectious diseases and cancer: challenge and promise. Cell Death Discovery 2016; 2: 16063; doi:10.1038/cddiscovery.2016.63. [PubMed] [Google Scholar]
Gautam D, Han SJ, Duttaroy A, Mears D, Hamdan FF, Li JH, Cui Y, Jeon J, Wess J. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab 2007; 9: 158-69.[PubMed] [Google Scholar]
García-Jordán N, Berrizbeitia M, Concepción JL, Aldana E, Cáceres A, Quiñones W. Estudio entomológico de vectores transmisores de la infección por Trypanosoma cruzi en la población rural del estado Sucre, Venezuela. Biomédica 2015; 33: 247-57. [PubMed][Google Scholar]
Vielma JR, Concepción JL. Diagnóstico de la enfermedad de Chagas utilizando como antígeno la proteína recombinante de 24 kDa (Pgr24). [Trabajo especial de grado], Maestría en Biología Celular, Posgrado Interdisciplinario en Biología Celular. Facultad de Ciencias. Universidad de Los Andes, Mérida, Venezuela. 2005. 155 p. [Google Scholar]
de Cuba MB, Ribeiro-Machado MP, Farnesi TS, Alves AC, Martins LA, de Oliveira LF, Capitelli CS, Leite CF, Silva MV, Machado JR, Borges-Kappel H, Sales de Campos H, Paiva L, da SilvaGomes NL, Guimarães-Faleiros AC, de Paoli de Carvalho Britto CF, Savino W,
Cruz-Moreira O, Rodrigues Jr V, Montano N, Lages-Silva E, Ramirez LE, Dias da Silva VJ. Effects of cholinergic stimulation with pyridostigmine bromide on chronic chagasic cardiomyopathic mice. Mediators Inflamm 2014: 475946. doi: 10.1155/2014/475946. [PubMed][Google Scholar]
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. Annu Rev Pathol 2019; 14: 421–447. doi: 10.1146/annurev-pathol-020117-043711. [PubMed] [Google Scholar]
Silva AD, Bottari NB, do Carmo GM, Baldissera MD, Souza CF, Machado VS, Morsch VM, Schetinger MRC, Mendes RE, Monteiro SG, Da Silva AS. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue. Mol Cell Biochem 2018; 438: 59-65. doi: 10.1007/s11010-017-3113-y. [PubMed] [Google Scholar]
Schafer da Silva A, Teresinha França R, Machado Costa M, Breno Paim C, Chimelo Paim F, Schmatz R, Augusto Jaques J, Rosa Schetinger M, Maria Morsch Vera, Melazzo Mazzanti C, Terezinha dos Anjos Lopes S. Cholinesterase activity in serum, whole blood and lymphocytes of dogs experimentally infected with Rangelia vitalii. Acta sci vet 2013; 41: 1-7. [Google Scholar]
Machado CRS, Caliari MV, de Lana M, Tafuri WL. Heart autonomic innervation during the acute phase of the experimental American trypanosomiasis in the dog. Am J Trop Med Hyg 1998; 59: 492-6.. [PubMed] [Google Scholar]
Medina-Rosales MN, Muñoz-Ortega MH, García-Hernández MH, Talamás-Rohana P, Medina-Ramírez IE, Salas-Morón LG, Martínez-Hernández SL, Ávila-Blanco ME, Medina-Rosales B, Ventura-Juárez J. Acetylcholine Upregulates Entamoeba histolytica Virulence Factors, Enhancing Parasite Pathogenicity in Experimental Liver Amebiasis. Front Cell Infect Microbiol 2021; 10: 586354. doi: 10.3389/fcimb.2020.586354. eCollection
[PubMed] [Google Scholar]
Mahmoudvand H, Sheibani V, Keshavarz H, Shojaee S, Esmaeelpour K, Ziaali N. Acetylcholinesterase Inhibitor Improves Learning and Memory Impairment Induced by Toxoplasma gondii Infection. Iran J Parasitol 2016; 11: 177-85. [PubMed] [Google Scholar]
Quintero Hernández CC, Barcellos LC, Díaz Giménez LE, Bonfante Cabarcas RA, Garcia S, Coury Pedrosa R, Matheus Nascimento JH, Kurtenbach E, Masuda MO, Campos de Carvalho AC. Human chagasic IgGs bind to cardiac muscarinic receptors and impair L-type Ca2+ currents. Cardiovascular Research 2003; 58: 55–65 https://doi.org/10.1016/S0008-6363(02)00811-8. [PubMed] [Google Scholar]
Peraza-Cruces K, Gutiérrez-Guédez L, Castañeda Perozo D, Lankford CR, Rodríguez-Bonfante C, BonfanteCabarcas R. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro Braz J Med Biol Res 2008; 41: 796-803.. [PubMed] [Google Scholar]
Labrador-Hernández M, Jiménez L, Leon G, López R, Mendoza W, BonfanteRodriguez C, Torres-Peraza J, BonfanteCabarcas R. A Decreased Expression and Functionality of Muscarinic Cholinergic Receptor in Acute Chagas Myocarditis. World Journal of Cardiovascular Diseases 2014; 4: 46491. doi:10.4236/wjcd.2014.46040. [Google Scholar]
Labrador-Hernández M, Suárez-Graterol O, Romero-Contreras U, Rumenoff L, Rodríguez-Bonfante C, BonfanteCabarcas, R. El sistema colinérgico en ratas infectadas con Trypanosoma cruzi con miocardiopatía chagásica inducida por ciclofosfamida: estudio electrocardiográfico. Invest Clin 2008; 49: 207-24. [Google Scholar]
Hagos A, Goddeeris BM, Yilkal K, Alemu T, Fikru R, Yacob HT, Feseha G, Claes F. Efficacy of Cymelarsan and Diminasan against Trypanosoma equiperdum infections in mice and horses. Vet Parasitol 2010; 171: 200-6. doi: 10.1016/j.vetpar.2010.03.041. [PubMed] [Google Scholar]
WHO. Control of the Leishmaniases. Report of a Meeting of the WHO Expert Committee on the Control of the Leishmaniases. World Health Organization, Geneva. 2010. [Google Scholar]
Santos de Lima KS, Cavallone IN, Oliveira KS, Passero LFD, Laurenti MD, Jesus JA, Marinsek GP, Chucri TM, Mari RdB. Infection with Leishmania (Leishmania) infantum Changes the Morphology and Myenteric Neurons of the Jejunum of Golden Hamsters. Parasitol 2021; 1: 225– 237. https://doi.org/10.3390/parasitologia1040024. [Google Scholar]
Vila-Nova NS, Morais SM, Falcão MJC, Bevilaqua CML, Rondon FCM, Wilson ME, Vieira IGP, Andrade HF. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of Dimorphandra gardneriana and Platymiscium floribundum, native plants from Caatinga biome. Pesq Vet Bras 2012; 32: https://doi.org/10.1590/S0100-736X2012001100015. [Google Scholar]
Incani RN. The Venezuelan experience in the control of Schistosomiasis mansoni. Mem Inst Oswaldo Cruz 1987; 82: 89-93. [PubMed][Google Scholar]
MacDonald K, Buxton S, Kimber MJ, Day TA, Robertson AP, Ribeiro P. Functional Characterization of a Novel Family of Acetylcholine Gated Chloride Channels in Schistosoma mansoni. Plos Pathogen 2014; 10: e1004181. https://doi.org/10.1371/journal.ppat.1004181. [PubMed] [Google Scholar]
Camacho M, Agnew A. Glucose uptake rates by Schistosoma mansoni, S. haematobium, and S. bovis adults using a flow in vitro culture system. J Parasitol 1995; 81: 637-40. [PubMed][Google Scholar]
Camacho M, Alsford S, Jones A, Agnew A. Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol 1995; 71: 127-34. [PubMed] [Google Scholar]
Jodal M, Wingren U, Jansson M, Heidemann M, Lundgren O. Nerve involvement in fluid transport in the inflamed rat jejunum. Gut 1993;34:
-30. doi: 10.1136/gut.34.11.1526.[PubMed] [Google Scholar]
Collins SM, Blennerhassett PA, Blennerhassett MG, Vermillion DL. Impaired acetylcholine release from the myenteric plexus of Trichinellainfected rats. Am J Physiol 1989; 257: G898-903. doi: 10.1152/ajpgi.1989.257.6.G898. [PubMed] [Google Scholar]
Kumari P, Nigam R, Singh A, Nakade UP, Sharma A, Garg SK, Singh SK. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis. Parasitol 2017; 144: 1412-6. [PubMed][Google Scholar]
Rothwell TLW, Merritt GC. Vaccination against the nematode Trichostrongylus colubriformis—II. Attempts to protect guinea-pigs with worm acetylcholinesterase. Int J Parasitol 1975; 5: 453-60. [PubMed] [Google Scholar]
Griffiths G, Pritchard DI. Vaccination against gastrointestinal nematodes of sheep using purified secretory acetylcholinesterase from
Trichostrongylus colubriformis--an initial pilot study. Parasite Immunol 1994; 16: 507-10. [PubMed] [Google Scholar]
McKeand JB, Knox DP, Duncan JL, Kennedy MW. Immunisation of guinea pigs against Dictyocaulus viviparus using adult ES products enriched for acetylcholinesterases. Int J Parasitol 1995; 25: 829-37. [PubMed] [Google Scholar]
Hewitson JP, Ivens AC, Harcus Y, Filbey KJ, McSorley HJ, Murray J, Bridgett S, Ashford D, Dowle AA, Maizels RM. Secretion of Protective Antigens by Tissue-Stage Nematode Larvae Revealed by Proteomic Analysis and VaccinationInduced Sterile Immunity. [PubMed][Google Scholar]
Matthews JB, Davidson AJ, Freeman KL, French NP. Immunisation of cattle with recombinant acetylcholinesterase from Dictyocaulus viviparus and with adult worm ES products. Int J Parasitol 2001; 31: 307-317. [PubMed] [Google Scholar]
Tedla BA, Pickering D, Becker L, Loukas A, Pearson MS. Vaccination with Schistosoma mansoni Cholinesterases Reduces the Parasite Burden and Egg Viability in a Mouse Model of Schistosomiasis. Vaccines (Basel) 2020; 8: 162. [PubMed] [Google Scholar]
Depósito Legal: ppi201102ME3935 - ISSN: 2477-9369.
Copyright ©2012 ULA Todos los derechos reservados
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.