Factores que afectan la actividad de un centro catalítico
Resumen
En este trabajo se discute un marco de interpretación experimental del desplazamiento electrónico de un sitio catalítico. Aunque esta interpretación no es nueva, se cree que es importante presentar este contexto mencionando los ejemplos obtenidos hasta ahora en dos soportes diferentes, como son, el carbono grafítico y los óxidos semiconductores. Los cambios en la propiedad electrónica de los sitios catalíticos tienen el efecto de modificar la energía de adsorción de la especie reactiva, como se discute utilizando el monóxido de carbono como sonda molecular.
Recibido: 05-09-2021 Aceptado: 24-10-2021Palabras clave
Texto completo:
PDFReferencias
- Tauste SJ. 1987. Strong metal-support interactions, Acc. Chem. Res., 20: 389-394.
- Tauster SJ, Fung SC, Baker RTK, Horsley JA. 1981. Strong Interactions in Supported-Metal Catalysts, Science, 211: 1121-1125.
- Tauster SJ, Fung SC, R.L. Garten RL. 1978. Strong metal-support interactions. Group 8 noble metals supported on TiO2, J. Am. Chem. Soc., 100: 170-175.
- Schwab GM, Derleth H. 1967. Inverse Mischkatalysatoren, Zeitschrift für Physikalische Chemie, 53: 1-8.
- Solymosi F. 1968. Importance of the Electric Properties of Supports in the Carrier Effect, Catalysis Reviews, 1: 233-255.
- Timperman L, Feng YJ, W. Vogel W, Alonso-Vante N. 2010. Substrate effect on oxygen reduction electrocatalysis, Electrochim. Acta, 55: 7558-7563.
- Lewera A, Timperman L, Roguska A, Alonso-Vante N. 2011. Metal–Support Interactions between Nanosized Pt and Metal Oxides (WO3 and TiO2) Studied Using X-ray Photoelectron Spectroscopy, J. Phys. Chem. C, 115: 20153-20159.
- Timperman L, Alonso-Vante N. 2011. Oxide Substrate Effect Toward Electrocatalytic Enhancement of Platinum and Ruthenium–Selenium Catalysts, Electrocatalysis, 2: 181-191.
- Timperman L, Lewera A, Vogel W, Alonso-Vante N. 2010. Nanostructured platinum becomes
alloyed at oxide-composite substrate, Electrochem. Commun., 12: 1772-1775.
- Vogel W, Timperman L, Alonso-Vante N. 2010. Probing metal substrate interaction of Pt nanoparticles: Structural XRD analysis and oxygen reduction reaction, Appl. Catal. A-Gen, 377: 167-173.
- Gogotsi Y, Huang Q. 2021. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices, ACS Nano, 15: 5775-5780.
- Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes- Paniago R, Pimenta MA. 2006. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett., 88: 163106.
- Campos-Roldán CA, Ramos-Sánchez G, Gonzalez-Huerta RG, Vargas García JR, Balbuena PB, Alonso-Vante N. 2016. Influence of sp3–sp2 Carbon Nanodomains on Metal/ Support Interaction, Catalyst Durability, and Catalytic Activity for the Oxygen Reduction Reaction, ACS Applied Materials & Interfaces, 8: 23260-23269.
- Alonso-Vante N. 2018. Photocatalysis an enhancer of electrocatalytic process, Current Opinion in Electrochemistry, 9: 114-120.
- Ma J, Habrioux A, Morais C, Lewera A, Vogel W, Verde-Gómez Y, Ramos-Sanchez G, Balbuena PB, Alonso-Vante N. 2013. Spectroelectrochemical Probing of the Strong Interaction between Platinum Nanoparticles and Graphitic Domains of Carbon, ACS
Catalysis, 3: 1940-1950.
- Maillard F, Savinova ER, Simonov PA, Zaikovskii VI, Stimming U. 2004. Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported Pt nanoparticles: Interparticle versus intraparticle heterogeneity, J. Phys. Chem. B, 108: 17893-17904.
- Herrero E, Chen QS, Hernandez J, Sun SG, Feliu JM. 2011. Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects, Phys. Chem. Chem. Phys., 13: 16762-16771.
- Blyholder G. 1964. Molecular orbital view of chemisorbed carbon monoxide, J. Phys. Chem., 68: 2772-2778.
- Bagus PS, Pacchioni G. 1992. The contribution of metal sp electrons to the chemisorption of CO: theoretical studies of CO on Li, Na, and Cu, Surf. Sci., 278: 427-436.
- Wu M, Zhang Y, Zhang R, Ma J, Alonso-Vante N. 2022. Highly active oxygen evolution reaction electrocatalyst based on defective-CeO2-x decorated MOF(Ni/Fe), Electrochim. Acta, 403: 139630.
- Sun X, Gao X, Chen J, Wang X, Chang H, Li B, Song D, Li J, Li H, Wang N. 2020. Ultrasmall Ru Nanoparticles Highly Dispersed on Sulfur-Doped Graphene for HER with High Electrocatalytic Performance, ACS Applied Materials & Interfaces, 12: 48591-48597.
- Babucci M, Guntida A, Gates BC. 2020. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis, Chem. Rev., 120: 11956-11985.
- Sui X, Zhang L, Li J, Doyle-Davis K, Li R, Wang Z, Sun X. 2020. Enhancing metal–support interaction by in situ ion-exchanging strategy for high performance Pt catalysts in hydrogen evolution reaction, Journal of Materials Chemistry A, 8: 16582-16589.
- Stevanović SI, Panić VV, Dekanski AB, Tripković AV, Jovanović VM. 2012. Relationships between structure and activity of carbon as a multifunctional support for electrocatalysts, Phys. Chem. Chem. Phys., 14: 9475-9485.
- Zhong H, Estudillo-Wong LA, Gao Y, Feng Y, Alonso-Vante N. 2021. Oxygen vacancies engineering by coordinating oxygen-buffering CeO2 with CoOx nanorods as efficient bifunctional oxygen electrode electrocatalyst, Journal of Energy Chemistry, 59: 615-
- Jiménez-Morales I, Haidar F, Cavaliere S, Jones D, Rozière J. 2020. Strong Interaction between Platinum Nanoparticles and Tantalum-Doped Tin Oxide Nanofibers and Its Activation and Stabilization Effects for Oxygen Reduction Reaction, ACS Catalysis, 10: 10399-10411.
Ramos-Sanchez G, Balbuena PB. 2014. CO adsorption on Pt clusters supported on graphite, Journal of Electroanalytical Chemistry, 716: 23-30.
Lim DH, Wilcox J. 2012. Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles, J. Phys. Chem. C, 116: 3653-3660.
- Lim DH, Wilcox J. 2011. DFT-Based Study on Oxygen Adsorption on Defective Graphene- Supported Pt Nanoparticles, J. Phys. Chem. C, 115: 22742-22747.
- Ma J, Habrioux A, Luo Y, Ramos-Sanchez G, Calvillo L, Granozzi G, Balbuena PB, Alonso- Vante N. 2015. Electronic interaction between platinum nanoparticles and nitrogendoped reduced graphene oxide: effect on the oxygen reduction reaction, Journal of Materials Chemistry A, 3: 11891-11904.
- Ma J, Habrioux A, Miyao T, Kakinuma K, Inukai J, Watanabe M, Alonso-Vante N. 2013. Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt-Ti nanoparticles, Journal of Materials Chemistry A, 1: 8798–8804.
- Jiang DE, Overbury SH, Dai S. 2012. Structures and Energetics of Pt Clusters on TiO2: Interplay between Metal–Metal Bonds and Metal–Oxygen Bonds, J. Phys. Chem. C, 116: 21880-21885.
- Estudillo-Wong LA, Ramos-Sanchez G, Calvillo L, Granozzi G, Alonso-Vante N. 2017. Support Interaction Effect of Platinum Nanoparticles on Non-, Y-, Ce-Doped Anatase and Its Implication on the ORR in Acid and Alkaline Media, ChemElectroChem, 4: 3264–3275.
- Hussain S, Kongi N, Erikson H, Rähn M, Merisalu M, Matisen L, Paiste P, Aruväli J, Sammelselg V, Estudillo-Wong LA, Tammeveski K, Alonso-Vante N. 2019. Platinum nanoparticles photo-deposited on SnO2-C composites: An active and durable electrocatalyst for the oxygen reduction reaction, Electrochim. Acta, 316: 162-172.
- Manzo-Robledo A, Boucher AC, Pastor E, Alonso-Vante N. 2002. Electro-oxidation of Carbon Monoxide and Methanol on Carbon-Supported Pt-Sn Nanoparticles: a DEMS Study, Fuel Cells, 2: 109-116.
- Alonso-Vante N. 2018. Chalcogenide Materials for Energy Conversion. Pathways to Oxygen and Hydrogen Reactions, 1 ed., Springer International Publishing, Chapter 5.
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
Se encuentra actualmente indizada en: | |||
![]() |