Aspectos ambientales de la electromovilidad
Resumen
El rescate del medio ambiente, así como la preocupación por el cambio climático, exige de una atención inmediata y oportuna. En este sentido, el 22 de abril se celebra el día Internacional de la Pacha-Mama, haciendo un llamado a la reflexión sobre nuestra interacción con la naturaleza. En esta ocasión, el presidente de la Organización de las Naciones Unidas (ONU) ha hecho un llamado a los ciudadanos del mundo, a exigir a sus dirigentes la toma de medidas necesarias para proteger el planeta y su biodiversidad. Uno de los aspectos a considerar es la contribución aportada por los medios de transporte a la contaminación del medio ambiente. En este trabajo se hace una revisión actualizada del uso de fuentes alternativas de energía eléctrica para la movilidad de medios de transporte, conocido como electromovilidad.
Recibido: 15-02-2023
Aceptado: 01-05-2023
Palabras clave
Texto completo:
PDFReferencias
- Marschoff CM. (1986) Prospects for hydrogen energy systems in Argentina. Int. J. Hydrogen Energy 11(5) 317-319.
- Marschoff C.M. (1992). Fondo de Cultura Económica de Argentina. Las fuentes de energía en el siglo XXI.
- Terneus EA., Coppola L., Marschoff CM. (1997) Technology substitution in the energy market: the logistic approach revisted. Energy Convers. Mgmt. 38(5)415-441.
- Marschoff CM (2018), Earth dialogue, Green Cross. Argentina. (1-21).
- https://unfccc.int/es/news/los-ministros-de-la-cop27-piden-una-accion-climatica-mas-ambiciosa.
- Santos G. (2017). Road transport and CO2 emissions; What are the challenges? Transport Policy, 59, 71-74.
- Zhao Li, Xi X, Na Q, Wang S. (2021). The technological innovation of hybrid and plugin electric vehicles for environmental carbon pollution control. Environmental Impact Review, (86) 106506. https://doi.org/10.1016/j.eiar.2020.106506.
- Rodríguez M, Vásquez A, Sarmiento A, Millet Z. (2017). Renewable Energy Sources and local development. International Journal of Social Sciences and Humanities, 1(2) 10-19
- https://ec.europa.eu/commission/presscorner/detail/nl/MEMO_16_2497.
- Li H, Dai J, Wang A, Zhao S, Ye H. (2020). Recycling and Treatment of Waste batteries. Mater, Sci. Eng. 612, 052020.
- Rugeri M et al. (2021). Electric mobility in a smart city: European overview. Energies 14(2) 315-344.
- Márquez J, Márquez OP, Weinhold E, Márquez K. (2021). Hydrogen from Solar Energy with Electrochemistry- Revista de Ingeniería y Tecnología Educativa (RITE). 4(1)11-27.
- López-Rivera SA, Fontal B, Márquez OP, Márquez J. (2005). High Pessure conductivity and fotoconductivity of polyveraroles. Polymer Bulletin. 54 (4-5) 291-301.
- Márquez J, Márquez OP. (2019). Solar Energy and Electrochemistry in the book “Recent advances in Electrochemical Research”, Rolando Tremont editor, Kerala, India, 169-222, ISBN:978-81-7895-545-2.
- Wang Y, Díaz DF, Chen KS, Wang Z, Adroher XC. (2020). Materials, technological status, and fundamentals of PEM fuel cells - A review. Materials Today, 32. 178-203.
- Science-Division, Environmental Science - Informe (2020). CO2 Emissions. Oak Ridge Laboratory, Tennessee, USA.
- Du H, Chen Z, Peng B, Southworth F, Ma S, Wang Y. (2019). What drives CO2 emissions from the transport sector Energy, 175, 195-204.
- Pietrzak K, Pietrzak O. (2020). Evironmental Effects of Electromobility in a Sustainable Urban Public Transport. Sustainability, 12 (3) 1052-1073.
- Mackenzie W. (2021). 700 million electric vehicles will be on the roads by 2050. Artículo de prensa, 2 páginas (mayo de 2021).
- Global-EV. (informe 2021). Acelerating ambitions despite the pandemic. International Energy Agency, International Energy Agency, Brussels, 1-101.
- Barnet J. (Informe 2021). Energy Security and Resilience, NREL, Brussells.
- Xu L, Wang Y, Shah SAA, Zameer H et al. (2019). Economic Viability and Environmental Efficiency Analysis of Hydrogen production., 7(8), 494-472.
- Márquez J, Márquez OP. (2018). Electroquimienergia. Revista de Ingeniería y Tecnología Educativa-RITE, 1(2) 9-26,
- Linderoth H. (2002). Forecast errors in IEA-countries’ energy consumption. Energy Policy, 30(1), 53-61.
- https://www.dnv.com/energy-transition-outlook/download.html?utm_source=Google&utm_medium=Search&utm_campaign=eto22&gclid=Cj0KCQjwz6ShBhCMARIsAH9A0qW3iZLu-8yhuCBnPik5uy1QEJeYrA6xhvsYuCVNCzr5hPsj4Hied74aAjOaEALw_wcB.
- Urpelainen J, Van de Graaf T. (2016). The renewable Energy agency: a success story in institutional innovation? Law and economics, 15, 159-177.
- Global Wind Farm Industry 2022-2026. https://www.reportlinker.com/report-summary/Wind-Power/57078/Global-Wind-Farm-Industry.html.
- González Martín MI. (2023). Energía solar térmica. Necesidad del seguimiento solar. https://riubu.ubu.es/handle/10259/7297.
- Filippin FA, Fasoli HJ. (2021). Photophysical and Photochemical systems with semiconductors for the conversion of Solar energy-A review. Annales AFA. 32 (1)22-31.
- Vieira DAG, Guedes LSM, Lisboa AC, Saldanha RR. (2015). Formulations for hydroelectric energy production with optimality conditions. Energy Conversion and Management, 89, 781-788.
- Schiel K, Baume O, Caruso G, Leopold U. (2016). GIS-based modelling of Sgallow geothermal energy potential for CO2 emission mitigation in urban areas. Renewable Energy. 86, 1023-1036.
- Rodrigues N, Pintassilgo P, Calhau F, Gonzalez-Gorbeña E, Pacheco A. (2021). Costbenefit analysis of Tidal energy production in a coast, a lagoon. The case of Ria FormosaPortugal. Energy, 229 (75)120812.
- Camporeale S. (2021). Wave Energy conversion-A Special Issue of Energies, Energy. This special issue belongs to the section wind, wave and Tydal Energy, https://doi.org/10.3390/en16020874.
- Slusarczyk B. (2020). Energy Transformation towards sustainability, electromobility for sustainable transport in Poland, in the book “Electromobility” Elsevier, Amsterdam, pp. 199-218, DOI: 10.1016/B978-0-12-817688-7.00010-0.
- Han C. (2020). Energy density issues of flexible energy storage devices. Energy Storage Materials, 28, 264-292.
- May N. (2018). Local environmental impact assessment as decision support for the introduction of electromobility in urban public transport system. Transportation research Part D - Transport and Environment, 64,192-203.
- Šarkan B, Loman M, Synák F, Skrúcaný T, Hanzl J. (2022) Emissions Production by Exhaust Gases of a Road Vehicle's Starting Depending on a Road Gradient. Sensors (Basel). 22(24):9896. doi: 10.3390/s22249896. PMID: 36560263; PMCID: PMC9781685.
- Madina C, Zamora I, Zabala E. (2016). Methodology for assessing electric vehicle charging infrastructure business models. Energy policy, 89, 284-293.
- Bhatti G, Mohan H, Raja-Singh R. (2021). Towards the future of smart electric vehicles: Digital tween technology. Renewable and sustainable Energy reviews. 141, 110801.
- Khayyam H, Bab-Hadiashar A. (2014). Adaptive intelligent Energy management system of plug-in hybrid electric vehicle. Energy, 69, 319-335.
- Albatayneh A, Assaaf M, Alterman D, Jaradat M. (2020). Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles. Environmental and climate technologies, 24 (1) 669-680.
- Liu Y, Zhu Y, Cui Y. (2019). Challenges and opportunities towards fast charging battery materials. Nat. Energy, 4, 540-550.
- Mohtasham J. (2015). Review Article-Renewable Energies. Energy Proceedia. 74, 1289-1297.
- Chudy A, Mazurek PA. (2019). Electromobility - The importance of power quality and environmental sustainability. Journal of ecological Engineering. 20 (10)15-23.
- Klos M. et al. (2019). Forecast and impact of electromobility development on the polish electric power system. E3S web of conferences 88, 01002019, Warsov, Poland.
- Das HS, Rahman MM, Li S, Tan CW. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618.
- Sperling D. (2018), Electric vehicles: Approaching the tipping point. Bulletin of the atomic scientista, 74 (1) 11-18.
- Benitez A. (2021). Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank. Journal of Cleaner Production, 278, 123277.
- Kinga S. (2021). Plug-in Hybrid Ecological Category in Real Driving Emissions. Energies, 14(8) 2340. https://doi.org/10.3390/en14082340
- Xiao J. (2021). A review of pivotal energy management strategies for extended range electric vehicles. Renewable and Sustainable Energy Reviews, 149, 111194.
- Climent H. (2021). Exploiting driving history for optimizing the Energy Management in plug-in Hybrid Electric Vehicles. Energy Conversion and Management 234(2) 113919.
- Hu X. (2015). Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Applied Energy, 137 (1) 913-924.
- Thor A. (2020). Evaluating system architectures for driving range estimation and charge planning for electric vehicle. Journal of Software, Practice and Experience. 51 (1) 72-79.
- Bedogni L. (2016). An integrated traffic and power grid simulator enabling the assessment of e-mobility impact on the grid: a tool for the implementation of the smart grid/city concept. Journal of Engineering Sciences and Innovation.1(1)73-89.
- Cherif R. (2021). Riding the energy transition: Oil beyond 2040. Asian Economic Policy Review 16 (1) 117-137.
- D Elia A. (2021). Impact of Interdisciplinary Research on Planning, Running, and Managing Electromobility as a Smart Grid Extension, IEEE Access 3 (1) 2281-2305.
- Skok S, Havaš LV, Radosevic V, Cvitanovic M. (2020). Impact of Electromobility to the Power Distribution System, IEEE PES/IAS PowerAfrica, Conference, Nairobi, Kenya, pp. 1-5; doi: 10.1109/PowerAfrica49420.2020.9219914.
- Kaufmann R. (2021). Feedbacks among electric vehicle adoption, charging and the cost and installation of rooftop solar photovoltaica. Nat. Energy. 6, 143-149.
- Zielinska A. (2020). Electromobility research: The impact of using renewable energy solutions on the development of electromobility. Przeglad Elektrotechniczny, 1, 123-12 ISSN 0033-2097, R. 96 NR 12/2020.
- Minh P. (2021). Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam. Sustainability 2021, 13(6), 3528; https://doi.org/10.3390/su13063528.
- Xi W. (2021). Hybrid of fixed and mobile charging systems for electric vehicles: System design and analysis. Transportation Research Part C: Emerging Technologies126, 103068.
- Chandra-Majhi R. (2020). A systematic review of charging infrastructure location problem for electric vehicles. Transport Reviews. 41(3) 1-25.
- Yao W et al. (2014). A Multi-Objective Collaborative Planning Strategy for Integrated Power Distribution and Electric Vehicle Charging Systems. IEEE Transactions on Power Systems, 29 (4), 1811-1821doi: 10.1109/TPWRS.2013.2296615.
- Wang Ch. (2021). Hybrid of fixed and mobile charging systems for electric vehicles: System design analysis,126, 103068.
- Wellik T. (2021). Utility-transit nexus: Leveraging intelligently charged electrified transit to support a renewable energy grid. Renewable and sustainable. Energy Reviews, 139, 110657.
- Karaca A. (2021). An integrated renewable energy based plant with energy storage for a sustainable community. Sustainable Energy Technologies and Assessments. 45, 101217.
- Alkawssi G. (2021). a Local Electricity Market between Prosumers and Electric Vehicles. Appl. Sci, 11(9), 3847.
- Asensio OI, Lawson MC, Apablaza CZ. (2021). Electric vehicle charging stations in the workplace with high-resolution data from casual and habitual users. Sci Data 8, 168, 1-7. https://doi.org/10.1038/s41597-021-00956-1.
- Liu K. (2014). Considering the dinamic refueling behavior in locating electric vehicle charging stations. Annals of the Photogrammetry, Remote Sensing and Spatial Information. II(2).41-46.
- Elrahmani A. (2021). GCC region and future opportunities. Current Opinion in Chemical Engineering. 31, 100664.
- Sanjay J. (2021). Electric Vehicle Charging Potential from Retail Parking Lot Solar Photovoltaic Awnings. Renewable Energy, 169, 608-617.
- Chen Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3, 279-289.
- Fahd A. (2021). Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems. Energies, 14(2), 489; https://doi.org/10.3390/en14020489.
- Amin A. (2020). An integrated approach to Optimal Charging Scheduling of electric Vehicles Integrated with improved Medium-Voltage Network Reconfiguration for power Loss Minimization. Sustainability, 12, 921.
- Patil H, Kalkhambkar VN. (2021). Grid Integration of Electric Vehicles for Economic Benefits: A Review. Journal of Modern Power Systems and Clean Energy, 9 (1) 13-26, doi: 10.35833/MPCE.2019.000326.
- Golla NK, Sudabattula SK. (2021). Impact of Plug-in electric vehicles on grid integration with distributed energy resources: A comprehensive review on methodology of power interaction and scheduling. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.03.306.
- Wolinetz M, Axsen J, Peters J, et al. (2018). Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model. Nat Energy 3, 132–139. https://doi.org/10.1038/s41560-017-0077-9
c
Todos los documentos publicados en esta revista se distribuyen bajo una
Licencia Creative Commons Atribución -No Comercial- Compartir Igual 4.0 Internacional.
Por lo que el envío, procesamiento y publicación de artículos en la revista es totalmente gratuito.
Se encuentra actualmente indizada en: | |||
![]() |